AD-A132 326 ISSUES IN THE DESIGN AND IMPLEMENTATION OF ACT2(U) 1/3
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB D G THERIAULT JUN 83 AI-TR-728
UNCLASSIFIED NO00014-80-C-0505 F/G 9/2

i

T T T S iy -+ T T

P

e e e C——

o

lI= 1l

N
O

I

I e

12 28 123
-
2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

L G

Technical Report 728

Issues in the Design

AT 3232

and
Implementation

of Act2

Daniel G. Theriault

DTIC FILE COPY

Artificial Intelligence Laboratory

DTIC

ELECTEF™,
SEP 121083 (!
b

D

| DISTRIBUTION STATEMENT A&

Approved for public release)
Distribution Unlimited

83 08 23 098

DR e g e s T

P BT et XVG i e
-

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

READ INSTRUCTIONS
REPORT DOQCUMENTATION PAGE e T e
1. REPORT NUMBER 12. GOVT ACCESSION NO.[3. RECIPIENT'S CATALOG NUMBER
AI-TR 728 ¥4 D-4(5232(
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOO COVERED

Issues in the Design and Implementation of Act 2| Technical Report

§. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
Daniel G. Theriault NO014-80~C-0505
9. PERFORMING ORGANIZATION NAME AND ADORESS 0. PROGRAM ELEMENT. PROJECT, T ASK

Artificial Intelligence Laboratory R T (e TR

545 Technology Square
Cambridge, Massachusetts 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanc?d Research Projects Agency June 1983
1400 Wilson Blvd 13. NUMBER OF PAGES
Arlington, Virginia 22209 213

14. MONITORING AGENCY NAME & ADORESS(I/ ditferent irom Controlling Dffice) 1S. SECURITY CLASS. (of thie report)
Office of Naval Research UNCLASSIFIED
Information Systems
Arl ’ngton’ v,rg’nia 222]7 1%¢ soc:ESé.oAgtlEP'lCAYION- ODOWNGRADING

16. OISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract enlered fn Block 20, {I different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WOROS (Continus on reverse alds {{ necessary and Identify dy bfock numbaer)

Actor Languages Open Systems
Description and Action Concurrent Systems
Computer Programming Languages Distributed Systems
Message Passing Semantics Parallelism

20. ABSTRACT (Cortinue on reverse alde {1 necssssry and identify dy block number)
Act2 is a highly concurrent programming language designed to exploit the procef-
sing power available from parallel computer architectures. The language sup-
ports advanced concepts in software engineering, providing high-level construcks
suitable for implementing artificially intelligent applications. Act2 is
based on the Actor model of computation, consisting of virtual computational
agents which communicate by message-passing. Act2 serves as a framework in
which to integrate an actor language, a description and reasoning system, and
a pro =

DD ,%Sr%; 1473 eoimion oF 1 Nov 8s 1S OwsOLETE UNCLASS I F1ED
S/N 0102-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

issues in Act2's design and the implementation of an interpreter for the language.

Rccession For
NTIS GRA%XI

Availability Codes
~ |Avail and/or
Dist Special

DTIC TAB M
Unannounced N
Justification _ _ __ J
Ll i
By
Distribution/
L SEet el

Issuces in the Design and Implementation of Act2

by
Daniel Gary Thenault

Massachusetts Institute of Technology

June 1983

©® Massachusctts Institute of Technology 1983

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the rescarch reported on in this
paper was provided primarily by the System Development Foundation. Support for

the Artificial Intelligence Laboratory is provided in part by the Advanced Research

Projects Agency of the Department of Defense under Office of Naval Research
contract N0014-80-C-0505.

0
DN Y e o

~ Issues in the Design and Implementation of Act2

by
Daniel Gary Theriault
Department of Electrical Engineering and Computer Science

! on May 6, 1983 in partial fulfillment of the requirements
for the Degree of Master of Science

M Revised version of a thesis submitted to the

Supervised by Professor Carl E. Hewitt

Abstract

“Act2is a highly concurrent programming language designed to exploit the
processing power available from parallel computer architectures. The language
supports advanced concepts in software engincering, providing high-level constructs
suitable for implementing artificially-intelligent applications. Act2 is based on the
Actor model of computation, consisting of virtual computational agents which
communicate by message-passing. Act2 serves as a framework in which to integrate
an actor language, a description and reasoning system, and a problem-solving and
resource management system. This document describes issues in Act2's design and
the implementation of an interpreter for the language.

-

Acknowledgments

I would like to take this opportunity to shower my thanks on Carl Hewitt, my
thesis advisor, for his help in making this thesis a reality. He provided a wealth of
ideas and encouragement. My wife, Candace, provided moral support and helped
massage drafts into more coherent forms, for which 1 will be forever grateful. 1hope
1 will be able to make up for this period of intense suffcring during the years ahead.
I'd like to extend special th.anks to Henry Lieberman and Jonathan Amsterdam for
their implementation of Scripter and an Apiary, without which an Act2 interpreter
would remain a dream. Peter de Jong, Carl Mikkelsen, Gene Ciccarelli, Dan Weld,
Roy Nordblom, and Priscilla Cobb also played essential roles in forming that
dynamic (and unique) environment called the Message Passing Semantics group.
This thesis would have been impossible without the solid foundation of Carl
Hewitt's work, Henry Lieberman’s implementation of Actl, Jeff Schiller's work on
Apiary0, Bill Kornfeld's Ether, and work on Omega by Jerry Barber, Beppe Attardi,
and Maria Simi. [owe a debt of gratitude to Charles Smith and the System

Development Foundation for théir financial support.

To.my wonderful wife, Candace.

Preface: A Guide to this Document

The organization of this document was part of an attempt to satisfy a varicty of
audiences. When possible, essential information is encapsulated in a convenient
location, to be studied or ignored as a whole. The mamn body of the document
describes the historical setting in which Act2 materialized, the creation process, and
a rationale for its design. The appendices generally describe the language itself, and

serve as reference maternial.

Chapter One describes the context in which Act2 was built, including the
foundation of previous work upon which it stands. Chapter Two is an
impressicnistic introduction to the tanguage itself, making use use of canonical
examples. At this point, interested readers may browse through the appendices in
order to become more familiar with the language before pushing on. The following
chapters assume a familiarity with the langunage and a willingness to refer to
appendices for details of the language’s syntax and semantics. Chapter Three relates
the design and development strategies used to produce Act2. Chapter Four
discusses issues considered important in Act2's design. It is the backbone of the
document’s body. Chapter Five touches on implementation issues and mechanisms,

and Chapter Six wraps up with a summary and conclusions.

Appendix A contains a glossary for help in decoding actor jargon. Appendix
B presents a sample of conversational interaction with Act2. Appendix C informally
describes the syntax and semantics of Act2, construct by construct. Appendix Disa
more formal description of the language, in the form of an Act2 implementation of
itself. Itis useful for resolving ambiguities in the natural language descriptions of

Act2, and for understanding the general strategies used in its implementation.

Appendiy B desceribes pre-defined names and actors which come with an installation
of Act2, as well as some standard communication protocols which they use.

Appendix F discusses a few more language issues considerced too distracting or

unimportant for Chapter Four.

=y

it 4

Table of Contents
Preface: A Guide to this Decument 5
Chapter One: Conceptual Framework 13
1.1 The Actor Model of Computation 15
1.1.1 Actors 15
1.1.2 Transactions 7
1.2 Plasma : 19
1.3 Actl 19
1.4 Omega 21
1.5 Ether 23
1.6 Apiary0 26
1.7 Integration 28
Chapter Two: Introductory Examples 30
2.1 A Simple Recursive Factorial Actor 30
2.2 A More Concurrent Factorial Actor 32
2.3 A Simple Bank Account Actor 34
2.4 A New Control Abstraction 35
Chapter Three: The History of Act2 38
3.1 A Meta-Circular Description of Act2 40
3.1.1 Perspective 40
3.2 A Toy Language Implementation Experiment 42
3.2.1 Act2 Implementation 48
Chapter Four: Issues in the Design of Act2 50
4.1 Act2 is Part of a Layered Implementation 50
4.1.1 Act2 Assumptions S1
4.1.2 Act2 Design Goals 52
4.1.2.1 Integration as a Design Goal 53
4.1.2.2 Expressive Power as a Design Goal 53
4.1.2.3 Expressiveness as a Design Goal 54
4.2 Programimer Interaction 54

r - - - T— . : T y——p T S eemarrene.
4.2.1 Interactiveness 55
4.2.1.1 Actor-Based interpretation 56
4.2.2 Act2 Separates Syntax from Semantics 57
4.2.2.1 Presentation and Editing Tools 57
4.2.3 Syntactic Issues 58
4.2.3.1 Bracketed Syntax 58
4.2.3.2 Template English 58
4.2.3.3 Verbosity 59
4.2.3.4 Keyword-Based versus Positional Instantiation 61
4.2.3.5 Extensibility 62
4.2.4 The Expressive Character of Act2 63
4.2.4.1 Familiarity 63
4.2.4.2 Economy of Concept 64
! 42,43 Uniformity 64
4.2.4.4 Programmer Productivity Supported by High-Level 65
Constructs
4.2.4.5 Abstraction and Extension 66
4.3 Act2 has Actor Semantics 67
4.3.1 Act2 is Actor-Based 67
4.3.1.1 Representation Abstraction 68
4.3.1.2 Absolute Containment 68
4.3.2 Modularity 69
4.3.3 Message Pass.ng Semantics Permeate Act2 70
4.3.3.1 Primitive Actors use Message Passing Semantics 70
4.3.3.2 Actors Implemented in Act2 have Actor Scripts n
4.3.3.3 Programs as Data il
4.3.4 Transactions 12
4.3.4.1 Customer Chains versus Execution Stacks 3
4.3.4.2 Complaint Handling 73
4.3.5 Inherent Concurrency 75
4.3.5.1 Local versus Global State Change 16
4.3.5.2 Local Binding versus Assignment 76
4.3.5.3 Concurrent Commands and Shared Resources 76
4.3.5.4 Concurrent Evaluation and Explicit Sequericing i
4.3.5.5 Resource Management 18
4.4 Act2 Integrates Description and Action 78
4.4.1 Coexistence of Mechanisms for Description and Action 78
4.4.1.]1 Abstract Syntax for Description and Action 80
4.4.2 The World of Action 81
4.4.2.1 Change 81
8
| . . .
e ” — , o

v 1

mind:

4.4.2.2 Local Changes versus Global State Changes
4.4.2.3 Muintaining Computation Histories

4.4.3 Descriptions as Information Containers

4.4.4 Description of Actors: Data-typing and Specification
4.4.4.1 Description of Actors
4.4.4.2 Behavioral Types
4.4.4.3 Controlling Visibility

4.4.5 The Many Uses of Pattern Matching
4.4.5.1 Pattern-Directed Recognition and Extraction
4.4.5.2 Security '
4.4.5.3 Polymorphism
4.4.5.4 Authentication

4.5 Act2 and Open Systems
4.5.1 Suitability for Open Systems
4.5.2 Synergy

Chapter Five: Implementation Issues and Mechanisms

5.1 Bottoming QOut
5.1.1 Rock-Bottom Actors
5.1.2 Scripts
5.1.3 Communications
5.1.4 Instance and Atomic Descriptions
5.2 Extensibility from a Listen-Loop
5.3 Providing both Positional and Keyword-Based Instantiation
5.4 Making Composite Constructs Work
5.5 Serialized and Unserialized Actors
5.6 Missing Information
5.7 Actors and Types
5.8 Making Pattern-Matching Work
5.9 Compilation
5.10 The Ubiquitous Atomic Description

Chapter Six: Conclusion

6.1 Summary
6.2 Design Philosophy
6.3 Future Work

Appendix A: Glossary

81
82
82
83
83
83
84
84
85
85
86
86
87
87
89

91

91
92
93
98
94
96
o7
98
100
101
103
104
105
106

108

108
110
111

113

Appendix B: A Sample Session with Act2
Appendix C: Act2 Language Description

C.1 The Actor Model of Computation
C.2 A Glimpse of Act2
C.3 Pre-Defined Actors
C.3.1 Symbols
C.3.2 Numbers
C.3.3 Boolean Values
C.3.4 Sequences
C.3.5 Convenient Expression of Basic Operations
C.4 Descriptions '
C.4.1 Atomic Descriptions
C.4.2 Instance Descriptions
C.4.3 Pattern Matching
C.5 Top-Level Expressions
C.5.1 DEFNAME Expression
C.5.2 DEFCONCEPT Expression
C.5.3 DEFINE and NEW Expressions
C.6 Simple Expressions
C.6.1 ASK Expression
C.6.2 QUOTE Expression
C.6.3 PARSE-EXPRESSION and PARSE-COMMAND Expressions
C.7 Crcating Actors
C.8 Simple Context-Free Commands
C.8.1 REPLY-TO Command
C.8.2 COMPLAIN-TO Command
C.8.3 SEND-TO Command
C.9 Composite Constructs
C.9.1 LET Construct
C.9.2 LABEL Expression
C.9.3 Interpretation of Command Bodies
C.9.4 ONE-OF Construct
C.9.5 IF Construct
C.9.6 CASE-FOR Construct
C.10 Context-Sensitive Commands
C.10.1 REPLY Command
C.10.2 coMPLAIN Command
C.10.3 BECOME Command

10

19
124

124
126
129
128
128
128
129
129
130
130
131
133
1347
138
138
139
140
140
141
141
142
146
146
147
147
148
148
149
149
150
15t
151
153
153
155
155

C.11 Other Commands 157

C.11.1 CONCURRENT and SEQUENTIAL Commands 157
C.11.2 HANDLE-COMPLAINTS Command 157
C.11.3 USING-SPONSOR Construct : 158
C.11.4 Comments 159
C.12 Syntactic Extension 159
C.12.1 DEFEXPRESSION Expression 160
C.12.2 DEFCOMMAND Expression 162
Appendix D: A Meta-Circular Description of Act2 163
D.1 Primitive Actors 163
D.2 Simple Expressions 165
D.3 Variable Binding 166
D.4 Abstraction 168
D.§ Extending Listener’s Environment 170
D.6 Creating Instance Descriptions 170
D.7 Creating Actors 172
D.8 Simple Commands 173
D.9 Composite Constructs 175
D.9.1 Case-for Construct 175
D.9.2 One-of Construct 178
D.9.3 Let Construct 180
D.9.4 Other Constructs 182
D.10 Subsidiary Abstractions 183
D.10.1 Environments and Layers 183
D.10.2 Atomic Descriptions 184
D.10.3 Instance Descriptions 186
D.10.4 Serializers 189
D.10.5 Evaluating Composite Expression Bodies 194
D.10.6 Evaluating Communication Handler Bodies 195
D.10.7 Evaluating a Command Sequence 196
Appendix E: Pre-Defined Names, Actors, and Protocols 197
E.1 Common Protocol for All Actors 199
E.2 Surface Syntax Actors 199
E.3 Parsers 200
E.4 Abstract Syntax Actors - 201
E.S Environments and Layers 202
E.6 Rock-Bottom Numbers 202

11

E.7 Symbols

E.8 Sequences and Lists
E.9 Atomic Descriptions
E.10 Instance Descriptions

Appendix F: Other Language Issues

F.1 Lexical Scoping

F.2 Aliasing

F.3 No Identifier Lifetime Problems

F.4 Context Sensitivity

F.5 Compilation fits into Interactive Framework

il

PIv. sl didumnia, e

203
203
203
204

205

205
205
206
207
208

M“.!—u‘r"‘!‘f.' i

Chapter One

Conceptual Framework

The recent history of Computer Science shows significant advances in
computer software and hardware engineering. Increasingly sophisticated and
complex software application systems are being designed and implemented,
especially in the area of Artificial Intelligence. Requirements for software have
grown to include open systems, in which autonomously owned and independently
conceived software systems communicate and cooperate. Modern programming
languages may exploit the increased parallelism afforded by hardware and support
the software engineering principles and practices for reduction of complexity in

designing and implementing software systems,

These trends were anticipated by [Hewitt 77, Hewitt and Smith 75], which
proposed a novel computational model, based on virtual computational agents
called actors. The actor model was abstraction-oriented, processor-independent,
and inherently concurrent. Languages realizing this model are intended to exploit

parallelism available in future computer architectures.

The first actor language, Plasma, was cssentially an experiment to determine
whether it was possible to construct a language based on the actor model of
compntation. Though Plasma was a useful language in itself, its design and
implementation pointed out the fact that more needed to be learned about actor-
based languages with advanced features suitable for Artificial Intelligence
applications. It also pointed out that trying to solve the wholc problem at once was

not a practical approach; that it may be more wicldy to decouple some of the issues

13

and mechanisins by experimenting with different aspects of the problem more

indcpendently.

The Act] programming language [Lieberman 81a] was a direct realization of
the actor computational model. It was an experiment in the use of actors and in
expressing their behavior and communication among them. The Omega description
and deduction system [Barber 82, Hewitt, Attardi, Simi 80] was an experiment in
knowledge representation and manipulation mechanisms useful for languages
implementing artificial intelligence applications. Ether [Kornfeld 79] was a
reasoning system for solving problems in much the same way they are solved by
scientific communities. 1t dealt with the creation and management of independent
problem solvers cooperating to establish or refute common goals. Apiary0 [Hewitt
80] was a design for a computer architecture consisting of a large number of
independent processors interconnected with high-bandwidth links. The computer
architecture itself was responsible for services such as storage management,
transmission of communications, migration of actors, and load-balancing.

Languages built of top of an Apiary can ignore such issues.

Many new ideas and insights were acquired in the design and development of
each of these experimental systems. Now that they have been completed, the time
has come to integrate these ideas and others developed independently into a single,

more sophisticated programming language: Prelude.

The Act2 programming language is the first step in implementing Prelude. It
blends basic ideas, mechanisms, and philosophies from Actl, Omega, and Etherin a
single programming language. They are not simply juxtaposed, but permeate the
language through to its foundation. Act2 itself does not fully implement the more
sophisticated aspects of Omega and Ether, but is extensible in a manner such that

the rest of Prelude can be embedded within it.

14

Our implementation of Act2 runs on Lisp Machines [Weinreb and Moon 81].
[tis written in Scripter [Lieberman 83), a language embedded in Lisp Machine Lisp,

tailored for expressing actor computations,

1.1 The Actor Model of Computation

Early computational models were significantly more machine-oriented than

the actor model. Early languages implicitly had a model in which computation
progressed as a succession of modifications to a global machine state. Both the
existence of a set of fixed-size storage locations and a set of machine instructions
showed through to the language level. Data structures were mapped onto sets of
contiguous storage locations. Procedures were developed to encapsulate a series of
primitive operations, procedure calls, and state changes as a single abstract
operation. Object-oriented languages abstracted away the structure of the store. An
object consisted of some storage and primitive operations with which to access and
manipulate this concrete representation. Though encapsulating the representation
of data types was a tremendous advancement, the underlying computational

paradigm was still that of sequentially modifying a global state. Advancements in

hardware technology have provided increasing amounts of parallelism for
programming languages to exploit. Languages based on the old computational

models are inherently sequential, and need special attention to exploit paratlelism.

1.1.1 Actors

The actor model of computation [Hewitt and Baker 78] is one in which many
active, self-contained computing entities, called actors, process communications in

parallel. Each actor has its own processing power and storage. Instead of having a

notion of control flow, the actor model makes use of a more flexible idea of

15

A W

cooperation; of communication among cutitics which are under their own contiol,

Actors interact by transmitting information in communications to each other,

An actor is a mathematical abstraction [Clinger 81a). 1t is self-contained and
opaquie in the sense that its internal composition cannot be directly seen or
manipulated by other actors. ‘They are restricted 1o sending communications to the
actor and observing whatever communications the actor might send in reply. Only
the actor itself can access its underlying representation. It also is responsible for
how it reacts to any communication; it may even choose 1o request authentication,
request additional computing resources, or reject the communication altogether. An
actor is an encapsulation mechanism providing information-hiding capabilities,

which are a corner stone of good software cagincering,

Each actor has a script, which determines what communications it can accept
and what computations it will perform upon receiving cach. It may also have some
acquainiances, which arc other actors it can directly communicate with as it
processes a communication. An actor's behavior is uniquely characterized by its
script and acquaintances. When it accepts a communication, an actor can make
simple decisions, create new actors, send communications to its acquaintances (or to

itself), and designate an actor to serve as a replacement for itself.

One of the effects an actor can cause is the replacement of itself by another
actor. It becomes indistinguishable from the replacement actor, which processes any
future communications for the actor. Serialized actors, or serializers, are actors
which may change. Unserialized actors are actors whose behavior includes no
provision for change. The distinction is a very important one. Because a serializer
may change as a result of processing a communication, it can only process one
communication at a time. For this reason, the order of arrival of communications is

important for serializers,

16

o . i gt | e 2

g

e ——

. e

Unscrialized actors, on the other hand, can change neither their behavior nor
their acquaintances, and as a result can process communications concurrently.
Arrival ordering does not matter, because behavior does not change. Unserialized
actors can also be copied arbitrarily, because lack of change will make the copics

indistinguishable.

1.1.2 Transactions

Communications are also actors. There are three kinds of communications,
representing the major forms of communication in transactions among actors. Each
communication has a message acquaintance containing information for the target
actor. An actor can send a request communication to another, asking it to cause
effects or provide information of some form. After the request has been successfully
fulfilled, some actor will eventually respond to the request with a
reply communication. Otherwise, the response is a complaint communication
containing a message, which says why the request could not be successfully

processed. We refer to replies and complaints collectively as responses.

Transmission of communications is one-way, asynchronous, and buffered.
Concurrent activities can be spawned simply by transmitting more than one
communication when processing a communication. The sender does not wait for
the receiver (or targer) to be ready to receive a communication; instead, the
communication is enqueued for reception by the receiver. If the receiver is
serialized, arrival order is preserved in a first-in, first-out queue. The sender of a
request does not wait for a response from the receiver, because all communication is
onc-way. Instead, the sender includes in the request a customer, an actor to which a
reply can be sent. lt also includes a complaint department, to which a complaint can
be sent, in the cvent that the request cannot be satisfied. When an actor sends a

request to another actor, it includes in the request a customer and complaint

17

| I LU SR

=

depariment, which are responsible for completing the computation. While this
computation continugs, the actor might begin processing another communication,

Sec [Kerns 80] for a rigorous definition of transactions.

Computation is event-driven. An event happens when an actor accepts a
communication for processing. An actor only consumes computing resources when
it processes a communication. An event is machine-independent, because all of the
information necessary to process it is present in the incoming communication and
target actor — its behavior and acquaintances. A transaction begins by sending a
requiest to some actor, which might send communications to other actors.
Eventually, an actor might reply to the original customer or complain to the original

complaint department.

Because of its emphasis on communication, the actor model of computation
unifies the ideas of procedural, data, and control abstraction developed by languages
using other models. For example, a data abstraction, such as a checking-account,
can be cmbodied in an actor with an acquaintance that serves as a current balance
and with a behavior that responds appropriately to requests for deposits,
withdrawals, and balances. A procedural abstraction, such as factorial, can be
embodicd in an unserialized actor which accepts a request containing an integer,
performs a computation (possibly asking itself for the factorial of other integers),
then replies with the result. Control abstractions such as recursion, iteration, back-
tracking, tree traversal, etc. can be embodied in actors which send each other

appropriate communications.

18

e

1.2 Plasma

Plasma was the first actor language. As the first linguage design endcavor
using the actor model of computation, it made some progress in implementing and
developing the model. At that time, the actor model was in its infancy, and
advancements have since been made, thanks to experiments such as Plasima and
Actl.

Plasma had basic facilitics for transmitting communications, but did not
formally distinguish requests, replies, and complaints as different kinds of
communications. It incorporated the ideas of expressing control structures as
patterns of message-passing, and of unifying the notions of data structures and
procedures by concentrating on communication. The language had simple data
structures such as numbers and simple constructors like scquences and packagers.
Packagers were similar to record structures in languages such as Pascal, allowing the
encapsulation of a set of labeled actors, but lacked the flexibility and power of
instance descriptions developed in Omega. Though Plasma did acknowledge the

need for change, the idea of serializers had not yet been conceived and formalized.

1.3 Actl

Actl was a programming language which directly realized the actor model of
computation [Lieberman 81a, Licberman 81b]. It was implemented in Maclisp for
PDP10, as an experiment in implementing an actor language which uses the
message-passing paradigm down to the level of primitive actors, such as numbers
and lists. 1t helped formalize common patterns of message-passing and useful types
of communications, as well as the notion of change in actors. As an experimental
language, it was unencumbered with mechanisms such as those in Omega and Ether,

which provide sophisticated services for the programmer. 1t provided mechanisms

19

= A - ___.'g/ e

h-..-.eé-—'!" oot s I Rp—

for creation of actors and for point-to-point communication between actors, It
allowed an actor to delegate its incoming communications to another actor for

handling.

Actl allowed a programmer to write programs which appeared to have two-
way communication between actors, and translated such expressions into requests

with appropriate customers and complaint departments,

Act] provided constructs for sending arbitrary communications to actors. It
also provided constructs for actors to change their behavior, and provided explicit
synchronization primitives to avoid problems of change. Actl also provided a
notion of a guardian, an actor which could accept requests, store away state

information, then reply to their customers at some later time.

Sub-expressions in Actl were evaluated sequentially. However, Actl

provided the following constructs for lazy and eager evaluation of expressions:

(delay expression)
(hurry expression)

When evaluated, the hurry expression would create and reply with a future,
which was an actor representing the value of the expression inside the hurry
expression. A newly-spawned process would evaluate that expression concurrently
with whatever activity occurred once the future was returned. If the future ever
became inaccessible, the process computing the expression’s value could be garbage-
collected. If any communications were sent to the future actor, it would enqueue

them, then send them to the result of the expression, once its evaluation terminated.

In addition, Actl had the notion of a race for concurrent activity. Given a list
of expressions to be evaluated, a result list was immediately provided. As results

became available, they were appended to the list asynchronously. An actor with

20

such a race i ats possesston could apply the standard fiest and rest operations on it
Synchronization was donc by the race, so that if results were not yet available, it
would wait for them before responding. I the race became inaccessible, it along

with the processes still computing for it would be garbage-collected.

Act] had primitive actors, such as numbers and symbols. 1t also had
constructors, like scquences. It had a form of constructor, called a package, which
rescmbled Plasma packagers and behaved in essentially the same manner. Pattern-
matching was performed as a structural correspondence between the pattern and

object of the match.

1.4 Omega

Omega [Hewitt, Attardi, Simi 80, Attardi, Simi 81, Barber 82]is a system for
representing knowledge in gencral, reasoning about knowledge, and retrieving
information from a knowledge base. It represents knowledge as
descriptions represcenting abstract concepts and individuals, and as relationships

among those descriptions.

The simplest form of Omega description is an atomic description, such as
real-number, complex-number, 12, man, animal, Or Jack. Thesc rcprescnt abstract

concepts or individuals in a model of some world.

An instance description represents some collection of individuals which are
instances of some abstract concept. 1t can also be thought of as representing any

individual in such a collection. Examples of simple instance descriptions include:

(a real-number)

(a complex-number)
(a man)

(an animal)

21

ol

‘The collection of individuals represented by an instance description can be
restricted by describing artributes which they possess. The order in which attributes

appear in an instance description is irrelevant.

(a man (with mother Ji11))
(a man (with mother (a woman)) (with father (a man)))
(a man (with mother (a woman (with father Bi11))))

One fundamental mechanism for knowledge representation is the assertion of
an inheritance relationship between two descriptions. This represents a relationship
between the collections of individuals the descriptions represent. The statement
(D1 1s D2) represents the idea that anything described by the description D1 is also
described by the description b2. This also means that b1 is a specialization of D2;
that b2 is a generalization of b1. Any knowledge associated with D2 is inherited by

D1.

(Jack 1s (a man))

(man is (& species))

((a man) 1s (a mammal))

(12 1s (a real-number))

((a real-number) 1s (a complex-number))

((a real-number) 1s (a complex-number (with imaginary-part 0)))

Omega implements an omega order logic for making deductions about
generalizations and specializations. Omega uses several axioms for reasoning about
descriptions and the inheritance relationships between them. For example, there is
an axiom establishing the commutativity of attributes, so that it doesn’t matter in
what order they are included in the instance description. There is an axiom
establishing the transitivity of the inheritance relation. There are axioms for dealing
with conjunctions and disjunctions of descriptions, and for relating them to single
descriptions. In addition to the with attributes above, there are different kinds of

attributes, to which more or fewer axioms can be applied.

For example, the relationship (Jack is (a mammal)) can be deduced from

the rclationships (Jack 1s (a man)) and ((a man) is (a mammal)) by the

22

transitivity axiom. Very signtficant amounts of knowledge can be embedded in a

lattice formed by descriptions and inheritance relationships between them.,

A description lattice is required to be monotonic. All descriptions are
unchanging, all inheritance relationships are assumed to hold forever once asserted,
and knowledge can be added but never altered or removed. Revision of beliefs,
opposing sets of beliefs, and suppositions can be represented using a viewpoint
mechanism. Omega assertions are commutative — the same deductions can be

made, no matter what order the inheritance relationships are asserted.

Omega supports partial description of abstract ideas, and incremental
specialization of those descriptions with others. Knowledge about the characteristics
of an abstract concept or object and its relationship to other concepts can be
embedded in an incomplete fashion, and new pieces of knowledge can be added
incrementally. Later, we can retrieve and use not only the particular information
asserted, but combinations thereof and deductions made from them using sets of
assertions made in the knowledge base and sets of axioms for relating them to each

other.

1.5 Ether

Ether is a highly concurrent problem solving system based on a metaphor of
problem-solving in a scientific community [Kornfeld 79, Kornfeld, Hewitt
81, Kornfeld 82]. In this model, many independent problem solvers (called sprites)
can exist in a community. Each sprite specifies a computation to be performed if
some specific goal or hypothesis is presented to the community for comment.
Sprites can cither work to prove or disprove a goal. Such a computation can post

new goals or hypotheses. One of the fundamental concepts is dissemination of

23

= .
.

S—— e AN v i ok .

' .

information to all sprites which have an interest in it.

Ether has a resource management scheme which associates a sponsor with each
goal. The sponsor provides computing resources for those working to prove or
disprove the goal. Sprite must request some of these resources, which are used as its

computation proceeds.

Ether contains commands for disseminating goals and hypotheses. For
example, assuming we had primitives for description and inheritance like those in
Omega, we might represent the fact that some pattern pat tern0 matched some

object object0 with a predicate: (pattern-matches pattern0 object0).

We might disseminate this as a goal:

(disseminate (goal (pattern-matches pattern0 object0))).

Some sprite we create then activate may eventually prove this, then
disseminate it as a hypothesis:

(disseminate (hypothesis (pattern-matches pattern0 object0))).

Alternatively, some spritc may disprove it, in which case it may disseminate its
negation:

(disseminate (hypothesis (not (pattern-matches pattern0 object0)))).

We can create and activate a trivial sprite with an expression such as:

(disseminate .
(when (goal (pattern-matches =p =0))

(if (eq p o)
then (disseminate (hypothesis (pattern-matches p 0)))))
Other sprites might try to prove or disprove this goal in other ways. For
example, if the pattern and object are instance descriptions, one sprite might try to

establish a simple correspondence between the concepts and attributes. Another

24

PRI RSY

-—w—::*::!!:------!-F-'-.-_--.-"-"""'""T"""

might traverse an Omega lattice, tryving to find a more claborate way of matching the
pattern and object. Other sprites might be responsible for applying Omega axioms
to descriptions and inheritance relations. Note that Ether itself knows nothing
about instance descriptions, Omega lattices, inheritance relationships, or deduction
axioms. These are assumed to be accessible via some operations independent of
Ether itself.

Often, a sprite trying to establish a goal will disseminate sub-goals, then
disseminate a hypothesis once the sub-goals have been established, [arge numbers
of hypotheses may be disseminated as a result. Because these have been
disseminated, they can be used in establishing other goals, without being re-
established. Because Ether is monotonic, these hypotheses are never forgotten. An
interesting phenomenon results, called combinational implosion, like the gains

obtained from dynamic programming techniques.

Ether allows programmers to explicitly mention sponsors and viewpoints. For
example, a goal can be sponsored by some specified sponsor or with respect to some

specified viewpoint:

(disseminate
(goal (pattern-matches pattern0 object0)
(with sponsor sponsor0)
(with viewpoint viewpoint0))
(disseminate
(when (goal (pattern-matches =p =0)
(with sponsor =s)
(with viewpoint =v))

D)

Constructs exist for establishment of sophisticated resource management
policies and for establishing relationships among viewpoints. One command for
resource management simply makes a sponsor refuse to provide resources to sprites
requesting them. This is useful for staving off alternative proofs of a goal once the

goal has been established or disproved. For example, if the goal above had really

25

been disseminitted, and a sprite had just established i, the sprite could choke off

rclated computation by other sprites with the command:

(withhold sponsor0
(with reason (established (pattern-matches pattern0 object0))))

Ether supports pluralism. Conflicting hypotheses can exist freely in different
viewpoints. Sprites can try to establish the same goal with different approaches.
Some sprites can try to establish a goal while other sprites can try to refute it. Ether
relics on monotonicity. It assumes that any hypotheses once disseminated will
remain available and unchanged for all time thereafter. Ether supports
commutativity. Goals and hypotheses disseminated after the activation of a sprite
will be made available to the sprite and processed as appropriate. Likewise, sprites
activated after the disscmination of goals and hypotheses will be available for the
sprite. Ether has much potential for parallclism. The very notion of sprites is as
problem solvers which compute independently, and therefore concurrently. The
monotonicity criterion avoids synchronization problems. The unit of concurrency is
the sprite, and not the commands or expressions which appear within its body. The
implementation of Ether was done in Lisp and is very lisp-oriented. This is not

inherent in Ether, but is an artifact of its implementation.

1.6 Apiary0

Apiary0 was a design and preliminary implementation of a computer
architecture for supporting actor languages [Hewitt 80]. It supports a model of
hardware as a large number of physically small processors, each with its own
memory, connected by a network of high bandwidth links. Each processor (or
worker) is independent of the rest, but they cooperate by sending messages to each

other over the network.

26

e+

T ———

The Apiary architecture is responsible for providing storage management
scrvices. It allocates space for newly-created actors, It also garbage-collects
inaccessible actors. A fast, real-time garbage collection algorithm [L.icberman and
Hewitt 83] is used for actors existing locally in the worker's memory. A more
complex garbage-collection algorithm involving cooperation among workers is used
in non-local garbage collection. This algorithin also trics to group related actors
onto the same worker, to provide locality of reference, and minimize

communications across workers,

The Apiary architecture is responsible for providing computing power for
actors. Because it must provide computing power for all actors in its memory, it
maintains a qucue of tasks. Each task consists of an actor and a communication for
it to accept. It dequeues a task and processes it, enqueueing any new tasks which

this processing causes.

The Apiary performs reliable transmission of communications to target actors.
If the target is on the same worker as the sender, the transmission is fast and trivial,
involving only local memory operations. If the target is not on the same worker as
the sender, then the worker must communicate with at least one of its neighboring
workers, to get the communication on its way to the target. The communication
transmission might involve more of this kind activity, depending on how far away
the target is, and what forwarding information each worker has. Routing of

communications is done dynamically by workers.

The architecture is also responsible for migrating actors and perforiming load-
balancing. Actors can be moved from worker to worker. This is easy for
unserialized actors, because they can be copiced arbitrarily. Moving serialized actors
requires extra synchronization. When a worker's pending task queuc is significantly

longer than one of its ncighbor’s queues, the worker can migrate some of the tasks to

21

T

e i = =

|
i

its neighbors. In this process of load-balancing, actors are chosen for migration in a
fashion that attempts to preserve locality of reference as much as possible, to

minimize message-passing across workers.

The Apiary must also be able to deal with physical problems, such as the

failure of communication channels or workers.

1.7 Integration

Actl, Omega, Ether, and Apiary0 were experiments dealing with different
aspects of the design of a high-level actor-based language system. Work progressed
on each, and independent implementations were developed, not all of which were
actor-based. An actor language currently being designed is intended to blend the
functionality and use the mechanisms of Actl, Omega, and Ether. This language,
Prelude s expected to run on a computer architecture such as the Apiary, which
provide parallel computation facilities, as well as services such as storage

management, migration, and transmission of communications.

As an actor language, Prelude will have at least the functionality of Actl. The
specific constructs with which it provides that functionality, however, will be
oriented more toward the intended usage and flavor of the language. In addition,
Prelude will use instance descriptions as information containers and as types. It will
use pattern-matching for information extraction, for type-checking, and for
recognition of communications. It will also use sponsors for resource management.
Pattern-matching with deduction can make use of sprites working together
concurrently to establish or deny a relationship between a pattern and the object

being matched.

Actl, Omega, and Ether were implemented independently. Each was molded

28

to deal with specific and well-chosen issues and ideas, and (o a large extent ignored
the issues dealt with by the others. As a result, their designs and implementations
are incompatible. All three are very closely tied to the Lisp language in which they

were implemented.

There are also conflicts in their underlying philosophies. Omega and Ether
asstime monotonicity, and assume that nothing they deal with will ever change.
Because of this, they can support parallelism, with no need for synchronization.
They can also assume that once something is shown to be true (or false), it will
remain that way forever. On the other hand, Act2 has serializers, which can alter

their behavior,

In addition, syntactic conflicts arise when attempts are made to integrate the

constructs from each with minimal change.

The task of implementing Prelude is factored into the implementation of a few
layers. The Lisp language provides an interface to the raw hardware used in the
implementation of an Apiary. A language called Scripter which is embedded in
Lisp provides an interface to the Apiary architecture, as well as convenient
expression of low-level message-passing computations. Act2 is an actor language
implemented in Scripter which integrates the basic mechanisms from Actl, Omega,
and Ether, in an extensible fashion. Prelude can be embedded in Act2 with a set of
syntactic and semantic extensions written in Act2, by providing the more

sophisticated services from Omega and Ether.

29

it

Chapter Two

Introductory Examples

The following chapters — especially Chapters Four and Five — assume a
familianity with the Act2 language. This chapter serves as a very brief introduction
1o the language, by way of illustrative examples. This chapter is merely intended to
provide impressions of the language, its constructs and their use. 1t is not intended
to provide a full understanding of the language. Such descriptions have been
encapsulated in appendices, for use as reference material. For those who are
interested in a deeper understanding of the syntax and semantics of Act2, we

recommend browsing through one or more of?
an Act2 tutorial {scction B, page 119},
an informal language description {section C, page 124},
or a detailed meta-circular description of Act2 {section D, page 163}.

The choice of appendices should be based on degree of familiarity with Act2 or with

previous actor language designs, and on the depth of understanding desired.

2.1 A Simple Recursive Factorial Actor

Our first example is a standard recursive implementation of factorial. The
factorial of any integer n larger than 0 is the product of n and the factorial of n - 1.

The factorial of 0 is 1. Factorial is only defined over the domain of whole numbers.

Our recursive implementation of fuctorial will be a direct realization of the
above description. We will establish a definition of a factorial abstraction, so we can
then obtain the factorial of a number such as 3 with an expression of the form,

(new factorial (with number 3)).

30

A factorial abstraction can be defined with an expression sich as the one

below, entered as input to an Act2 listen loop.

(define (new factorial
(with number (=n which-is (a whole-number))))
(if (=n 0)
(then do (reply 1))
(else do (reply (®* n (new factorial (with number (- n 1})))))))

The define expression includes a template describing a particular form of new
expressions. That is, the template
{new factorial (with number (=n which-is (a whole-number})))
characterizes all new expressions like (new factorial (with number 3000)),
which have a concept which evaluates to the factorial concept, and which has a

number attribute whose filler is a whole-number.

The define expression also includes an expression which denotes the meaning
of new expressions described by the template. This expression is evaluated in the
environiment in which the define expression itself was evaluated, extended with any
bindings occurring in the template. For example, when an expression such as
(new factorial (with number (+ 2000 1000))) is asked to evaluate itself in

some environment, it looks up the concept factorial in the environment.

Next, it asks the pattern
(a factorial (with number (=n which-is (a whole-number)))), which was
installed by the define expression above, to match an instance description of the
form (a factorial (with number 3000)). This resultsin a successful match,
binding n to 3000. The definition environment installed by the deline is extended
with this binding, producing a new environment. If the match had failed, a
complaint would have been sent immediately as the responsc to the new expression's

evaluation request.

Finally, lhc‘cxpression installed by the define,

31

|
‘[i
|

H

e ———

—

—

- o " g e 5 PR T — : B s i e ™ rvm \a -

(if (= n 0)

(then do (reply 1))

(else do (reply (* n (new factorial (with number (- n 1)))))))
is asked to evaluate itself in this extended environment. lts response to the
evaluation request is sent as the response for the evaluation of the new expression

itself.

When this expression is asked to evaluate itself, it discovers that 3000, which is
bound to n, and 0 do not belicve they are cqual. In response to the evaluation
request, it replies with the product of 3000 and the result of

(new factorial (with number 2999)).

2.2 A More Concurrent Factorial Actor

In the naive implementation of factorial above, the history of multiplications
in obtaining the factorial of 3000 had the form,
(3000 * (2999 * (... * (3 * (2 * (1 * 1)))...))). Allmultiplications had
to be performed sequentially, because of the algorithm chosen as the

implementation for factorial.

A highly concurrent implementation might view the factorial of 3000 as a
product of the integers in the range from 1 through 3000. The algorithm for
computing this range product might divide the problem into the product of the
range product from 1 through 1500 and the range product from 1501 through 3000.
These subproblems arc independent, and can be computed concurrently.
Moreover, they can be computed in the same manner, spawning ¢ven more
concurrent activity. Thus, a large number of the multiplications involved in

computing the factorial of 3000 could be done concurrently.

Our implementation of factorial can check for the special case of the factorial

3

]

i
b e S TN e O b i o o IE"|

ea—

of 0, and can make usc of a subsidiary range-product abstraction for mtegers larger

than 0. Here is the revised implementation of factorial.

(define (new factorial
(with number (=n which-1is (a whole-number))))
(if (= n 0)
(then do (reply 1))
(else do (reply (new range-product
(with low 1)

(with high n))))))

The implementation of the range-product abstraction has special cases, where
the lower bound is larger than and where the lower bound is equal to the higher

bound. Here is its implementation:

(define (new range-product
(with low (=1lo which-is (a natural-number)))
(with high (=hi which-1s (a natural-number))))
(one-of
(if (= 1o hi) do (reply 10))
(if (> 1o hi) do (reply 1))
(1f (< 10 hi) do
(let ((=mid match (floor (+ (+ lo hi) 2)))) do
(reply (* (new range-product
(with low 1)
(with high mid))
(new range-product
(with low (+ mid 1))

(with high hi))))))))

Notice that Act2 expressions such as the multiplication expression, *, are
defined to evaluate their arguments concurrently. This is a major source of
concurrency in performing range products using this algorithm. Notice also that the
if branches of the one-of expression are tried concurrently. That is, the boolean
expressions within them are evaluated concurrently, and the first one (temporally)

which is noticed to reply with a true value is chosen. The body of the chosen branch

is then evaluated.

33

-

koot s T

Segmi sty o f R et e i .

2.3 A Simple Baunk Account Actor

So far, we have scen actors which behave like mathematical functions,
performing factorials and range products. These are typical of the programming
style espoused by applicative programming aficionados. We can implement other
kinds of actors using the same abstraction mechanism. For example, we can define
asimple account actor, which can represent bank accounts. Our code will be
typical of an object-oriented programming style, made popular by Smalltalk [Ingalls
78]. We can establish a suitable meaning for expressions of the form
(new account (with balance 3000)), so their ¢valuation results in the creation of

new account actors with the specified balance.

Here is an example of an implementation of such an account abstraction:

(define (new account
(with balance =b))
(create
(is-request (a balance) do (reply (a balance)))
(is-request (a deposit (with amount =a)) do
(become (new account (with balance (+ b a))))
(reply (a deposit-receipt (with amount a))))
(is-request (a withdrawal (with amount =a)) do
(1et ((=new-balance match (- b a))) do
(if (> new-balance 0)
(then do
(become (new account (with balance new-balance)))
(reply (a withdrawal-receipt (with amount a))))
(else do

(complain (an overdraft))))))))

When an expression of the form (new account (with balance 3000)) is
asked to evaluate itself, it behaves in much the same way as
(new factorial (with number 3000)). The difference is that the expression
which gets evaluated is a create expression, which represents the creation of an actor
whose behavior is described by the communication handlers in the create expression.
These communication handlers classify the communications which the actor can

accept for processing, and describe what the actor will do to process cach

34

PR 0 =, 0 G v v ok AT RIERE TR T Ji SR 7 JNTSCRRmEpo

communication. For example, the first communication handler is for requests
containing a message which match (a balance). The actor replies to such a request

with a reply containing the current balance as its message.

The second communication handler is for requests containing deposits. When
such a request is received, the account concurrently replaces itself with a new
account with an appropriately increased balanced, and replies with a deposit receipt

for the deposited amount,

The third communication handler is for requests containing withdrawals.
When such a request is received, the account must first check for an attempt to
withdraw more than the current balance. If this happens, then it complains with an
overdraft and does not alter its behavior. If the amount is a valid one, the account
concurrently replaces its behavior with an appropriately decreased balance, and

replies with a receipt for the withdrawal.

Notice that the become and reply commands are evaluated concurrently in the
environment in which the actor was created, extended with the bindings of local
variables in the communication handlers and enclosing commands. Note also that
when the account receives a communication, the communication handlers attempt

to match it concurrently.

2.4 A New Control Abstraction

As a final example, we will define abstract syntax for an expression with which
we could extend the language. On the surface, this expression might look like
(first-rasponse expl exp2). We would like the evaluation of this expression to
respond with the first response it gets when it concurrently asks the two expressions

to evaluate themselves. As soon as it relays the first response, it should stop

35

L]
- i P eyt + Ao R e il it i

ik

sponsoring the sccond computation and should discard the sccond response.

Our implementation of the first-response-expression abstract syntax actor
will make use of two subsidiary abstractions, an initial-sponsor and a
subsequent-sponsor. The strategy is to collect all relevant information present in
the expression-eval request, including the message, customer, complaint--
department and sponsor. We create an initial-sponsor actor using the original
customer, complaint-department and sponsor. We then send both sub-expressions a
request containing the original expression-eval micssage, but designate the
initial-sponsor actor we just created as the customer, complaint-department and

Sponsor.

(define (new first-response-expression
(with expression-1 =exp1l)
(with expression-2 =exp2))
(create-unserialized
(is-communication
(a raquest
(with message (=original-message which-is (an expression-eval}))
(with customer =original-customer)
(with complaint-department =original-complaint-department)
(with sponsor =original-sponsor))
do
(let ((=1is match
(new initial-sponsor
(with customer original-customer)
(with complaint-department
original-complaint-department)
(with sponsor original-sponsor))))
do
(let ((=new-expression-eval match
(new request
(with message original-message)
(with customer is)
(with complaint-department 1is)
(with sponsor is))))
do
(send-to expl new-expression-eval)
(send~to exp2 new-expression-eval})}))))

The initial-sponsor actor is a serializer which serves as a sponsor for the

evaluation of the two sub-expressions, as a customer for collecting replies, and as a

36

L]
- 2 2o dagin R ko et G e e

T p——

e S G S et

T T T

F—‘_“- T ———

coniplaint-department for collecting complaints. As a sponsor, it should relay any
requests for more resources to the original sponsor. As a customer and complaint
department, it should relay the first responsc to the original customer or complaint
department, as appropriate. As it does this, it should also become a

subsequent-sponsor actor, which will refuse to grant more resources and will

discard any other response.

(define (new initial-sponsor
(with customer =c)
(with complaint-department =cd)
(with sponsor =s))
(create
(is-request (=message which-is (a resource-request)) do
(reply (ask s message)))
(is-reply =message do
(reply-to c message)
(become (new subsequent-sponsor)))
(is-complaint =message do
(complain-to cd message)
(become (new subsequent-sponsor)))))

The implementation of the subsequent-sponsor abstraction is quite simple.

It complains when asked for more resources, and does nothing in response to any

replies or complaints it receives.

f{define (new subsequent-sponsor)
(create-unserialized
(is-request (& resource-request) do
(complain (a no-resources-available)))
(is-reply something do)
(1s-complaint something do)))

<7

bl

Chapter Three

The History of Act2

One part of this thesis work has been work on the design of Act2. The design
effort consisted of taking the preliminary design for Prelude itself as documented in
[Theriault 82], analyzing it with respect to our design goals, self-consistency,
uniformity, and implementability, and making modifications as necessary. Some
changes were made less to the syntax of constructs than to their scmantics. The
design of Act2 involved evaluating the preliminary, documented design, checking
for consistency, synergy, simplicity; evaluating them in terms of new design goals
and principles; deciding what could be factored out into a base language and what
could be embedded in this language. Integration was envisioned in the preliminary
design, but its details had not been worked through. Some forms of bottoming out
had been addressed by Lieberman’s Actl implementation, but bottoming out of

scripts and instance descriptions was peculiar to the requirements for Act2.

As design began, so did the beginnings of an implementation, in order to
further develop intuitions for how much work is done in message-passing using
instance description, for the problem of bottoming out, and for what
implementation aids would be useful. At this time, Scripter did not yet exist, and an
Apiary simulator for the Lisp Machine was still in its infancy. An implementation in
Lisp would have been very bulky, time-consuming, and difficult to read and modify.
The circularity problems in bottoming out Act2 are more acute than they were for

Actl, and this would have accounted for significantly more code.

We decided to write a meta-circular description of Act2, using it as a tool in

38

L4

W —

e

the design of Act2 itself. The meta-circular description, being an abstract
implementation of Act2, also provided an opportunity to plan and experiment with

implementation strategices.

Once the language design had settled to a reasonable extent, Scripter and the
Apiary simulator were beginning to become usable for small experiments. We
decided to implement expressions for a small toy language, as if they were part of
Act2 itself. An implementation for these expressions was first written in Act2, to
demonstrate its generality, flexibility, and readability. This included the

implementation of an actor-based listen-loop, event-based parsing, and event-based

evaluation.

Next, an implemcntation for the toy language was attempted in Scripter, to
provide higher-level testing of it and to point out any problems and deficiencies in
the interface it provided to the Apiary. Once the fundamental portions of the toy
Janguage had been implemented, progressive extensions were made to it, to work
out more of the implementation problem, including bottoming-out of primitive

actors and implementing serializers.

This set the stage for an implementation of Act2 in Scripter. The next step
might have been to integrate descriptions and pattern-matching into the toy
language. This was a quantum leap in the complexity and size of the language.
Instead, work was started on the implementation of a rudimentary version of Act2 in

Scripter. This grew into the present implementation of an Act2 interpreter.

39

o ve s bt t. -’ r " & 2 .
PSRRI SN T, O i e ciade Gia
TR I " Db -

L

3.1 A Meta-Circular Description of Act2

3.1.1 Perspective

‘The meta-circular description is best understood by first understanding the
context in which it exists. A user’s interface to Act2 is an event-based listen-loop,
with an operating environment in which names are resolved. The listener first
accepts input from the user in the form of list structure, symbols, and numbers. It
asks this input to parse itself, producing an actor which represent the abstract syntax
of the input. This actor may have acquaintances which represent the abstract syntax
of portions of the input. The listener then asks the abstract syntax actor to evaluate

itself as an expression in the current environment.

Each abstract syntax actor is responsible for its own evaluation. Rather than
having a single interpreter, which accepts, parses, and evaluates the input, Act2’s
approach is "actor-based" or "object-oriented.” The interpretation process is a
cooperative one, with knowledge about each construct localized in the

implementation of the construct.

An interpreter for Act2 consists of a set of actors which parse list structure into
abstract syntax objects, and abstract syntax objects which evaluate themselves and
create actors or transmit communications as appropriate. Our meta-circular
description consists of an Act2 implementation of abstract syntax objects
representing Act2 constructs. That is, we describe the processing which occurs when

the abstract syntax object receives a request to evaluate itself in some environment.

The meta-circular description provides a form of informal, high-level
operational specification of the semantics of each construct. Because of the

circularities which naturally arise in an Act2 description of itself, our meta-circular

40

L R T — »
e ik L. imanbiis

description is miathematically vacuous. 1t does, however, convey to its reader a fairhy
accurate idea of just what each construct means, in a relatively clear, concise, and
precise manner. This made it useful for discussing the design decisions and
problems with others. It was often less ambiguous than corresponding English

descriptions.

1t was also useful because of the way it allowed us to postpone dealing with
low-level implementation detail, such as exactly how communications are
transmitted, how actors are implemented, how Act2 bottoms out into and interfaces
with the underlying architecture. Rather, it distills out the high-level problems and
issues, so they can be dealt with directly, rather than indirectly by debugging a large
and detailed implementation. For the same reason, it increased the likelihood of
experimenting with alternatives, because they were relatively quick and easy to try

out. In the long run, this saved much time and implementation effort.

Because the meta-circular description was writlen in a progranuning language,
it made case analysis more natural. The likeness to programming tended to promote
completeness and attention to detail. Often, troublesome cases which might
otherwisc have been ignored or taken for granted became apparent. This also
allowed us to use the programining intuitions, which we have acquired through

implementation experience, in the design process.

In addition, writing the description of Act2 in Act2 provided us with intuitions
about what Act2 programming would be like, and what Act2 code would look like.
This experience in itself was responsible for a few changes. Implementing Act2 in

itsclf also demonstrates its generality as a programming language.

In hindsight, the meta-circular description was a very useful design and

implementation tool. The structure and content of the Scripter implementation of

41

Act2 was modeled closely alter the meta-circular description, and progressed

smoothly as a result,

3.2 A Toy Language Implementation Experiment

When our meta-circular description had become relatively stabilized, we
began to experiment with the implementation of a very simple expressional
language. Part of our purpose was to specify the expressions in the language as
syntactic and semantic extensions to Act2. Since no implementation of Act2 existed,
the implementation of our toy language would actually be implemented as if part of
Act2, requiring only the additional implementation of an event-based listen-loop,
implementation of environments, and installation of appropriate behavior for

numbers, symbols and lists.

Initially, we needed only unscrialized actors, which was fortunate, since our
apiary simulator did not support serializers. Our environments were unserialized,
even though we realized they would eventually need to be serialized. The
expressions we chose to start with were representative of the lambda calculus. A
lambda expression provides the ability to lambda-abstract an expression with
respect to an identifier. Any free identifiers in the expression are statically bound.
When evaluated, a lambda expression replies with a unary operator. When this
operator is "applied” to an operand, the expression it abstracted from is evaluated in
its original context, but with the lambda-variable bound to the operand. Such an
application in our actor-based design consists of sending the operand as a message

in a request to the operator.

Our lambda and apply expressions have the form:

(1ambda lambda-variable-symbol abstracted-cxpression)
(apply operator-expression operand-expression)

42

-]] -
e - . T T E E*t"itw ' m il hond 'l'.h'h” T L W VI LV L TP e

"

——

An implementation in Act2 was tivial, The apply expression simply evaluates
the opcerator and operand expressions, then sends the evaluated operand (wrapped
in a request) to the evaluated operator. The Act2 code is presented below simply for
illustrative purposes, to present an image of the language, its use and expressiveness.
Code in this section is intended mainly to provide imagery, and its details need not
be understood except by readers who are interested enough to browse through

language descriptions in the appendices.

(define (new APPLY-EXPRESSION
(with operator =op)
(with operand =x))
(create-unserialized
(is-request (=eval which-1is (an expression-eval)) do
(reply (ask (ask op eval) (ask x eval)))}))))

The lambda cxpression simply results in a closure, which retains the variable,

expression, and environment for later use as an operator.

(define (new LAMBDA-EXPRESSION
(with variable =var)
(with body =exp))
(create-unserialized
(1s-request (an expression-eval (with environment =env))) do
(reply (new closure

(with variable var)
(with body exp)
(with environment env))))))

(define (new CLOSURE
(with variable =var)
(with body =exp)
(with environment =env))
(create-unserialized
(is-request =val do
(reply
(ask exp
(an expression-eval
(with environment
(new environment
(with primary
(ask (new empty-layer)
(& grow
(with symbol var)
(with value val))))
(with secondary env)))))))))

43

=

The language also had some simple expressions, 1o facilitate expenimentation.
Numbers evaluated to themselves. The symbols true and faise were bound in the

initial environment to primitive actors with appropriate behaviors,

With the addition of an if expression, to choose between two expressions to
evaluate, the language had the ability to make decisions, The if expression had the

form: (it boolean-expression expression-if-true cxpression-if -false).

Given this as a base, we demonstrated that Act2 indeed had the expressive
power to implement the lambda calculus, and the clegance to implement it in
simple, readable code. We also wrote Act2 code implementing environments, and

representing the behavior of numbers, symbols, and lists.

This established, we set about implementing environments and a listen-loop in
Scripter. We provided a scripter interface for Act2 to customize the behavior of
primitive actors. We implemented event-based parsers for the constructs, and
installed them in an expression-parsing environment. We implemented abstract
syntax for cach expression, which knew how to evaluate itself, given an
environment. We ran experiments on the apiary simulator, entering expressions in
our experimental language, noticing what they parsed and evaluated into, and
noticing how many events were required for parsing and evaluation. Printing of

actors was done by Lisp functions.

Some logical and numeric expressions were provided, to express simple

computations. These provided somewhat larger and more interesting test cases.

(not boolean-expression)

(and boolean-expression boolean-expression)
(or boolean-expression boolean-expression)
(eq cxpression expression)

(+ numeric-expression numeric-expression)
(= mumneric-cxpression nuineric-expression)
(* numeric-expression numeric-expression)

44

R ———

“—

We found it desirable to further extend our wy linguage, o remember the
results of previous computations. We invented a construct for extending the loop's
prevailing environment by binding a symbol to the result of cvaluating an
expression. In order to make this work right, we introduced a simple

implementation of serializers to the Apiary, to provide serialized cnvironments,
Our new construct had the form: (detname symbol expression).

It allowed us to construct recursive operators, simply by entering an

expression such as:

(defname factorial
(lambda x

(if (eq x 0)
1
(* x (apply factorial (- x 1))))))

Our implementation of expressions requiring the evaluation of sub-
expressions was a simple one. 1t would evaluate the sub-expressions sequentially
from left to right, obtaining the result from the leftmost before beginning the
evaluation of those to the right. Some evaluators for the lambda calculus have
included mechanisms for lazy or eager evaluation. For example, in an expression
stich as (apply (lambda x 3) operand-expression), it is not nccessary to evaluate
the operand-expression because it is not used in the body of the lambda expression.
Also, in an expression such as (apply (1ambda x (+ x x)) operand-expression),
the lambda calculus’ substitution semantics would cvaluate operand-expression
twice, Introduction of lazy evaluation mechanisims to lambda calculus interpreters

prevents unnecessary or duplicate evaluations of expressions such as these.

Lazy evaluation is easy to add to our little language implemented in Act2. We
can simply extend Act2 to include a simple delay cxpression, which replics

immediately with an actor. This actor saves the evaluation environment and the

45

L]
. " - v ok, & .
e S S b s s

ln

expression’s abstract syntax. 17 no message s ever sent 10 the delay, it never
evaluates the expression. If any are sent, the delay evaluates the expression, replaces
{ itself with the result, then processes the incoming communication. The delay

expression can have the form (delay expression) and can be implemented in Act2

as:
g (define (new DELAY-EXPRESSION (with expression =exp))]
(create-unserialized I
(is-request (=eval which-1is (an expression-eval)) do
(reply
(create
(is-communication =c do
(Tet ((=value match (ask exp eval))) do
(send-to value c)
(become value))))))))

We can selectively denote the lazy evaluation of an expression by explicitly]
saying (delay expression). For example, a programmer can guarantee lazy
evaluation of operands by writing apply expressions like
(apply (1ambda x 3) (delay operand-cxpression)). In this case, the
operand-expression would never be evaluated, because the operator would simply

reply with the value, 3.

Alternatively, we can have all operands to apply expressions be evaluated

lazily by trivially modifying our implementation of the apply expression:
(define (new APPLY-EXPRESSION
(with operator =op)
(with operand =x))
i (create-unserialized
(1s-request (=eval which-is (an expression-eval)) do
” (reply (ask (ask op eval) (delay (ask x eval)))))))

The ability to implement the delay and hurry expressions required a full

implementation of serializers in the Apiary. Eager evaluation was implemented
using futures, It was expressed in our language as (hurry expression). When

evaluated, a hurry expression immediately returns with a future actor which

represents the result of the evaluation, in much the samne way that a delay actor did
above. However, it concurrently asks the expression to evaluate itself, and to
respond to the future. Until it receives the response, the future will enqueue
communications intended for the vaiue. Once it obtains the value, the future will
become the value and will also send all of the enqueued communications to it for
processing. The implementation of futures is a bit more complicated than the
implementation of delays. Note that the response from the cyaluation of the
expression must be distinguished by the future from communications sent to the
value. We provide this ability by using the authentication mechanisms provided by
Act2.

Given the existence of the hurry expression, we can explicitly denote cager

evaluation of an ¢xpression with (hurry expression).

We can provide cager cvaluation by default in our little language by
modifying the apply expression, so the evaluation of the operation proceeds

concurrently with the evaluation of the operimd.

(define (new APPLY-EXPRESSION
(with operator =op)
(with operand =x))
(create-unserialized
(is-request (=eval which-is (an expression-eval)) do
(reply (ask (hurry (ask op eval)) (hurry (ask x eval)))))))

In the evaluation of an expression such as (apply (apply op argl) arg2),

the expressions, op, arg1, and arg2, arc evaluated concurrently.

Some researchers [Backus 78, Dennis 81, Turner 79] believe applicative
languages to be ideal for concurrent programming. Because every expression is
completely functional, and has no side-cffects, the order in which expressions are
evaluated is irrelevant. They typically introduce eager evaluation into interpreters

for these languages, in order to realize this potential for concurrency. No matter

a7

ok i D

how they implement their interpreters, some amount of synchronization is

necessary. In general, this synchronization requires the notion of state change.

Because of this, the applicative languages are not powerful enough to implement

their own interpreters. Similarly, these languages are not powerful enough to

implement interpreters with lazy evaluation.

3.2.1 Act2 Implementation

The implementation of Act2 in Act2 has the same style as the implementation

of the toy language expressions in Act2. It does, however, handle complaints

wherever they may occur. The listen-loop interface to Act2 has event-based, object-

oriented parsing {section 5.2, page 96} which makes the language extensible.

Abstract syntax objects representing Act2 expressions and commands are

responsible for their own evaluation.

Making syntactic extensions to Act2 is relatively simple. A programmer

simply extends the appropriate expression or command parsing environment,

mapping some symbol which will serve as a key word to a user-supplied parser. This

parser will parse list structure denoting an instance of the construct into some

abstract syntax actor. Act2 provides a construct for establishing this in a simple way.

For example, here is how we might establish a connection between the concrete and

abstract syntax for apply and lambda cxpressions:

48

(]
. y L0 D e Py rnera
st et s i i

s e

,’-,‘:.

(defexpression apply
;s a parser for "(apply EXPRESSION OPERAND)"
(create
(is-request (an expression-parse (with source =src)
(with expression-keywords =ek)
(with command-keywords =ck))
do
(case-for src ;s note that a LIST is a (simple) SEQUENCE.
(is ['apply =op =arg] do
(reply
(new application-expression
(with operator
(ask op (a parse-yourself-as-expression
(with expression-keywords ek)
(with command-keywords ck})))
(with argument
(ask arg (a parse-yourself-as-expression
(with expression-keywords ek)
(with command-keywords ck)))))))))))

It is quite likely that installations of Act2 will provide generalized parser
abstractions, which will often climinate the need to write code like that shown
above. Assuming the existence of such an abstraction, prefix-parser, the

installation of the lambda expression might look like:

(defexpression lambda
(new prefix-parser
(with keyword 'lambda)
(with number-of-arguments 2)))

Act2 is also semantically extensible, because a user may define his own
abstract syntax objects, or redefine pre-existing ones. The implementation of Act2
constructs consists of definitions of appropriate parsing and abstract syntax actors,

and the definition of any actors which are useful to create dynamically.

The implementation of Act2 in Scripter is closely patternéd after the meta-
circular description. It uses the same major implementation strategies. It differs in

the details, because Scripter docs not have the expressiveness of Act2.

49

Chapter Four

Issues in the Design of Act2

4.1 Act2 is Part of a Layered Implementation

Act2 is part of a layered approach to the design and implementation of a more
sophisticated actor language system. Prelude is intended to incorporate and
augment the functionality of the Actl, Omega, and Ether experiments. It will
integrate their fundamental mechanisms and higher-level approaches, ironing out
their differences in philosophy. The result will be a high-level, highly-concurrent
programming language with knowledge representation and problem solving
capabilitics. This language system will be accountable for the actors implemented
and created within it, making possible the cooperation of applications written within

it with independently-conceived application systems.

The design and implementation of Prelude is a rather ambitious project.
Attempting to implement it all at once would very likely lead to difficulties, as the
implementation of Plasma did, and might result in a very bulky implementation

which was difficult to understand and evolve.

Act2 was designed to serve as a substrate for the implementation of Prelude.
It can also stand as a programming language in its own right. Act2 addresses
practical issues involved in an interface with the computer architecture below. It
addresses issues involved in an interface for programming applications and
embedding languages above. In addition, it addresses issues involved in integrating
the fundamental mechianisms of Actl, Omega, and Ether into a coherent language

base. In this way, a substantial set of issues can be addressed by a manageable

.

50

b

o

project, without incurring the burden of a full-scale implementation of Prefude.

Prelude’s additional functionality can be embedded in Act2, using Act2
implementation mechanisms, without the need to address those issues already
addressed by Act2. Additional features include the ability to construct and
manipulate lattices of descriptions, related by inheritance; the ability to make
deductions based on these relationships; more sophisticated resource management

policies; and dissemination of information.

4.1.1 Act2 Assumptions

Act2 itself is built on top of other layers, in which other sets of problems are
factored out and solved. Lisp-Machine Lisp [Weinreb and Moon 81] provides a
comfortable interface to the underlying hardware, and provides abstractions suitable
for representing actors. The worker interface to the Apiary architecture is
implemented in Lisp, and provides a view of the underlying hardware as part of an
actor-based apiary, Scripter is a macro language embedded in Lisp, which provides
a high-level interface to workers, allowing computations to be expressed in terms of
actor creation, one and two-way ’communicalion, and change of behavior, in

addition 1o Lisp code. Act2 is impiemented in Scripter.

An important part of the design and implementation of Act2 is an assumption
about the character of computation on the underlying computer architecture. For
example, Act2 assumes that the transmission of communications is reliable, cheap,
and quick. The worker optimizes the transmission of a communication when the
target is on the same worker as the sender. Workers attempt to maintain locality of

reference when migrating actors to other workers,

Act2 assumies that creation of actors is very cheap. All that is involved in actor

51 .

g SR Rt

o

creation 1s the allocation in Lisp of a small data structure o represent the actor,

Act2 assumes that actors are garbage-collected, and that the garbage collection
algorithms are efficient and effective. Each worker does local real-time garbage
collection of inaccessible actors. An algorithm has been developed for this, which
reclaims storage quickly [Licberman and Hewitt 83]. Garbage collection across
workers 1s a more difficult problem, requiring a more sophisticated algorithm by

which workers cooperate to localize inaccessible actors for intra-worker reclamation.

Act2 assumes memory is inexpensive and plentiful. This is becoming more
and more true with time. Act2 also assumes that copying and maintaining multiple
copics of unserialized actors on different processors is cheap. Actors which cannot
change can be copied indiscriminately, to increase locality of reference, and to make

migration easier.

Act2 assumes that the underlying computer architecture may consist of large
numbers of processors interconnected by high-bandwidth links. The apiary was
designed with this in mind. Workers perforin load-balancing and migration, in

order to make usc of the available parallelism.

A consequence of these assumptions is that a high degree of concurrency may
be obtained by expressing computations in terms of large collections of highly
specialized actors communicating with each other by transmission of

communications. That is exactly the style of computation supported by Act2.

4.1.2 Act2 Design Goals

52

4.0.2.0 Integratian as a Design Goal

Act2 1s designed to integrate the fundamental mechanisms developed in
experiments with Actl, Omega, and Ether. As such, itis an actor-based language,
founded on message-passing semantics. It provides mechanisms for creating actors,

for point-to-point communication, and for expressing two-way communication.

Act2 makes use of descriptions in fundamental and pervasive ways, which
allow for them to coexist with other actors. It implements its own mechanisms for
pattern-matching, which do not involve deduction. Inheritance and deduction

mechanisms can be introduced as extensions to the language.

Act2 uses sponsors as its fundamental resource-management mechanism for
controlling asynchronous computations. It is possible to implement sprites as actors,
and to introduce more sophisticated resource management policies. Sprites can
work off patterns which arc descriptions, and dissemination of information can be
performed in coordination with description lattices and point-to-point

communication.

4.1.2.2 Expressive Power as a Design Goal

Expressive power is an objective measure of the generality of a language,
Because it will be used to implement Prelude and arbitrary applications for
concurrent systems, Act2 must be general enough to express whatever might be
necessary. Generality includes the ability to deal with concurrent systems, including

those which do not assume a closed world model.

One criterion for generality is the ability to implement Act2 in itself. The
meta-circular description {section D, page 163} is evidence of this. Another is the

direct support for the actor model, whose generality has been considered

53

O : i

s ot]

independently.,

Act2 is expected to be used to implement lunguages as well as applications,
For this rcason, it needs abstraction mechanisms and mechanisms for syntactic

extension,

In addition, Act2 is expected to deal with issues such as protection, security,
and authentication, to protect the integrity of actor systems and allow controlled

sharing of information.

4.1.2.3 Expressiveness as a Design Goal

Expressiveness is a highly subjective measure of the quality of a language. It
involves such areas as simplicity, friendliness, benevolent character, and range of
application of a language. For example, Act2 was designed to be interactive. Act2
was not designed to be a minimal language, providing only enough mechanism for
the integration and generality goals. Instead, its constructs are geared more toward
understandability and programmability. It includes software engineering features in
addition to those of Actl. Act2 was not designed to provide everything a
programmer might want, but to make it possible and convenient to embed further

and more useful mechanisms.

4.2 Programmer Interaction

One of the important aspects of a language is the interface it presents to a
programmer. We take a broad notion of "programmer™ to include both traditional
human programmers and computer programs which write or manipulate other
programs. There are many trade-offs in user-interface design, and more are

introduced by this broad concept of a user.

54

Our general approach in the design of Act2 has been to attempt to maximize
flexibility and generality. Specifically, in the area of programmer interface, we have
opted for a language which is highly interactive in character, for comfort in
programming. We have also attempted to decouple issues of syntax and semantics,

so they could be handled separately.

4.2.1 Interactiveness

One of the basic requirements for Act2 was that it be designed to be
interactive in nature. [Sandewall 80] demonstrates the utility of interactive
programming environments. Experience has shown that more interactive
programming environments tend to be more comfortable to work with and provide
a friendlier human interface to the machine and language system [Algol, Lisp,
Smalltalk, Halbert-thesis). Act2 was designed as an interpretive language;
compilation is treated as an optimization which is engineered to fit within this
framework. The interface to Act2 is a listen-loop, similar in nature to that of Lisp,
which accepts as input any expression in the language. This encourages a more

conversational interaction between man and machine.

There is always an environment associated with the listener for resolving
symbols used in the user’s input. This environment corresponds both to the context
of a conversation and to a personal data-base. The environment is preserved from

session 1o session, to provide a sense of continuity.

Special expressions cxist for the binding of names and definition of
abstractions at the top level. They alter the semantic content of the prevailing
environment, in order to preserve the definitions for later use. A user can associate
names with specific actors using the defname expression, and can can define

abstractions using the define expression. Most other expressions in the language do

55

ol

not affect the environment in which they are evaluated.

4.2.1.1 Actor-Based Interpretation

Act2 is implemented in the same style we advocate for all applications. There
is no centralized interpreter for the language. Instead, cach construct is
implemented by an abstract syntax actor, which is responsible for its own evaluation.
This makes semantic cxtensions possible in a very natural manner — we can simply
define new abstract syntax actors using the same mechanism for implementing any
other abstraction. The implementor only needs to make the abstraction obey the
communication protocols of abstract syntax actors, accepting communications such

as requests for evaluation or compilation.

Parsing is also actor-based. Each construct parses itself, using a parser which
has been associated with the construct. The listener reads in user input as a set of
nested syntactic phrases, represented as a composition of list structure, symbols, and
numbers. Each syntactic phrase is asked to parse itself. List structure scans itself,
looking for a symbol which has becn defined as a keyword for some construct. It
then delegates the job of parsing to the parser which has been associated with that

keyword.

This method of parsing makes syntactic extension of Act2 an easy matter. A

programmer can install a new keyword/parser pair using the defexpression and
defcommand expressions. Such declarations are done at top level, to the listener.

Once again, the actor-based programming discipline gives us the flexibility we

desire.

56

4.2.2 Act2 Separates Syntax from Senantics

The actor-based implementation of Act2 decouples the activities of parsing
and evaluation of language constructs. In so doing, it provides natural means for
syntactic and semantic extension of the language. In addition, it decouples the
syntax of the language from its semantics. A set of abstract syntax actor definitions

embody the semantics of the Act2 language.

These abstract syntax actors are largely independent from the concrete syntax
which is mapped onto them by a set of parsers. This separation of syntax and
semantics allows a large degrce of separation of style from mechanism, of
presentation from representation, of form from function, and of syntactic issues
from semantic issues. It allows us as language designers to concentrate on different

sets of issues separately.

We took advantage of this by concentrating on semantic issues and
requircments. We chose a concrete syntax which closely resembles the abstract
syntax we found desirable. Alternative sets of constructs can be mapped onto this

sct of abstract syntax actors if and when desired.

4.2.2.1 Presentation and Editing Tools

We gain additional benefits from this decoupling of syntax from semantics.
Presentation tools can operate with abstract syntax objects, and provide alternative
ways of looking at them, based on such things as programming style, familiarity of
the reader with the code, indentation preferences, and available space. This can

provide a more comfortable way to read code written by others.

Editing tools can make it more comfortable to write Act2 code. An editor can

provide templates for the programmer to fill, decreasing the amount of typing

51

S

e

needed. It can also allow programmers the luxury of personal short-hand, which it

converts to the appropriate abstract syntax. |

4.2.3 Syntactic Issues

4.2.3.1 Bracketed Syntax

Ll = T S

Act2 has a bracketed syntax. This was chosen because we needed a f
convenient, uniform way of recognizing phrases and sub-phrascs in the language. It
provides us with this ability even in the face of arbitrary syntactic extensions It l
makes the language amenable to convenient construction and analysis by computer '
programs as well as human programmers. It allows lexical analysis to be performed ;

automatically, and to be ignored by those making extensions. This in itself removes
a large part of the complexity of parsing. It reflects the structure of computer
languages in their syntactic representations. This makes the problems of parsing

and extension tractable.

User input is read in as nested list structure, grounded by "atomic” tokens
such as symbols and numbers. Each list, is asked to parse itself. In doing so, it scans
itself for a symbol for which has been established a keyword/parser pair. This is the
mechanism by which syntactic extension is made possible and practical in Act2.

Bracketed syntax is the most natural way we know of to provide thesc capabilities.

4.2.3.2 Template English

In choosing a concrete syntax for Act2, one of the guidelines we used was to -
try to make it rescmble English as much as possible. Whenever possible, we
attempted to make the meaning of constructs closely resemble the intuitive meaning

of the phrases denoting them, giving Act2 an air of familiarity and understandability

58

T ——— N —

even to novice readers. An Act2 construct often reads somewhat like text, with the
addition of parentheses to mark off essential clauses. This is especially noticeable in
instance descriptions and new expressions. It is also evident in more complex
expressions, such as case-for, if, one-of, and let. Some compromises were made for
the sake of conciseness. There is a point where verbosity ceases to enhance
readability because a sense of structure is lost. We believe Act2 strikes a good
balance, being verbose enough to be relatively understandable to novice readers,
using parenthetical template English to make the structure of the code visible, and

avoiding overly verbose concrete syntax for constructs.

Programs are also made more readable by the existence of more familiar
expressions of common primitive operations. For example, (+ 3 6) can be used
instead of (ask 3 (a + (with operand 6))) In addition, programmers can use the
infix notation (3 + 6) if they fecel more comfortable with it. This is slightly more
readable for novices and has more of an English-like "flow” to it. Unfortunately,
with the opportunity for arbitrary syntactic extension, there is a danger of confusing
leading identifiers with keywords. For example, the identifier ain (a + b) might
cause confusion when parsing the expression, because it resembles an instance
description. For this reason, Act2 warns programmers when they attempt to bind an

identifier which also happens to be an expression keyword.

4.2.3.3 Verbosity

One important trade-off in Act2 syntax is verbosity. On the one hand, a
language which is overly verbose may be cumbersome to write programs in, and
may even be less readable 1f the main ideas and algorithms are lost in words and
symbols. On the other hand, a language like APL which is overly terse can be very
cumbersome to read, even for those who have made the effort it takes to become

fluent in it. The bias in Act2 is toward readability, at the expense of increased

59

R

verbosity. Our assumptions are that more code is read than is actually written or
modified, and that the readers will often not be the original writers. 1t attempts to
combine the local-understandability benefits of natural language phrases with the
more global-understandability benefits of structured code. Of course, Act2 is
somewhat flexible about the whole matter, allowing programmers to introduce more
concise or verbose forms of constructs, using the syntax extension mechanisms.
Modern editors have abbreviation facilitics and other writing aids. Some deal
directly with the syntax of a language. With the similar tools, an Act2 programmer

should have few reservations about writing “verbose" code.

If we look at Act2 code more closely, we find it difficult to justify a more
concise syntax for its constructs. We could shorten the keywords, but the language
would become more cryptic. Instance descriptions are about as concise as they can
be, without an adverse effect on readability. As they are now, they read just like
English text and has exactly the connotations we intend, enhancing the imagery of
even experienced readers. New expressions could be forsaken in favor of a
positional notation, but we would lose the value of keywords, which are a great aid
to readability and understandability. One major source of bugs in the history of
Lisp programming has been interface problems and misunderstandings, because
Reading code is difficult without flipping back and forth between functien calls and
definitions, to see what each parameter means. In addition, the strong resemblance
between new expressions and instance descriptions is strongly suggestive of the
relationship between actors and their descriptions, and of Act2’s flexible notion of

instantiation of abstractions.

Act2 constructs have been designed so their most common usages are also
their most concise. For example, the otherwise clauses in create, one-of, and
case-for constructs are rarely needed, and can simply be omitted. The usual intent

of programmers is to simply complain if none of the possibilities they allowed for

60

actnally occur. In addition, all constructs relay any unhandled comnplaints which
might occur in the evaluation of sub-expressions within them, eliminating a need to

explicitly wrap a handler around the sub-expressions.

There arc many cases in Act2 where the programmer is allowed not to
explicitly denote information which can be derived from context. Commands like
reply and complain allow the programmer not to mention the intended target, when
handling a request communication. The become command refers to the enclosing
serializer, which necd not be explicitly mentioned. When the replacement actor is
simply another instance of the same abstraction, the new expression within the
become command need only mention those attributes which will be different. In
general, Act2's constructs behave in such a manner that customers, complaint

departments, and sponsors need not be explicitly mentioned by programmers.

4.2.3.4 Keyword-Based versus Positional Instantiation

It is possible for Act2 code to be presented in a more condensed form, when
desired. new cxpressions can be presented with a lisp-like function call notation
which climinates keywords. Programmers can easily make an cxtension for a

smalltalk-like keyword notation.

There are serious issues to consider when choosing a style. From a software
engineering standpoint, it is very useful for a keyword to describe the significance of
each parameter of an instantiation. ‘The attribute rclations in new expressions are
very useful for this purpose. They serve as good documentation for readers, and
allow extra consistency checking between the instantiation and the definition. They
also climinate the problems which occur when parameters arc permuted. The main
advantage of positional notation is its conciseness. In writing a program, it is very

convenient to reduce typing, and in reading a program, it sometimes makes the

61

it i et e i g 0 ok —r e SRS S SR s

—— ey

SRR

o o e L w3 R

overall algorithm more apparent by reducing the amount of text requived to
represent it. ‘The benefits of positional notation are often casily obtained with
appropriate editing and presentation tools. Act2 provides programmers with the

ability to choose which style they wish for each individual instantiation.

4.2.3.5 Extensibility

Part of the success of Lisp has been its extensibility. This feature allowed
other languages to be embedded within it. It also allowed the language itself to

grow to include increasingly sophisticated and useful features.

We also wanted Act-2 to be syntactically extensible, for these and additional
reasons. We fecl it may be desirable to develop more than one concrete syntax for
Act-2, to serve the needs, desires, and customs of programmers with different styles.
Syntactic extension allows programmers to choose a level of verbosity which best
serves their needs, and to introduce whatever syntactic sugaring they wish into the
language. Customization is an important property of a language which is to be used

by disparate institutions.

Assuming syntactic extensibility allowed the Act2 language design to go on at
the abstract syntax level, without much concern for the syntactic details. 1t also
allowed us, in the language design phase, to choose a concrete syntax which is very
near the abstract syntax, permitting us to concentrate independently on underlying

mechanisms and programmability.

Providing the ability for embedding Prelude in Act2 saves us from a full
implementation of Prelude; instead, we only need to program the cxtensions. It is
difficult to anticipate now the syntactic and semantic requirements of Prelude, so

syntactic extension is even more important,

62

o e ——

T —

4.2.4 The Expressive Character of Act2

There were some guidelines we used while choosing an abstract syntax for
Act2. Many of the decisions which needed to be made were very subjective in
nature, dealing more with expressiveness than with expressive power. We did not
intend for Act2 to be a kernel language for implementing Prelude. Instead, we
wanted it to be a full-fledged programming language in its own right, with emphasis
on mechanisms for good software engineering. This is necessary because the
implementation of Prelude is a rather complex task in itself, and should be done
with a suitably high-level aﬁd comfortable language. These criteria were deemed
more important than the size of Act2 and the complexity of its implementation. As
a consequence, Act2 has high-level, very flexible constructs, such as éreale, case-for,

one-of, and let.

4.2.4.1 Familiarity

One of the guidelines we followed was to make Act2 syntax be as similar as
possible to familiar syntax. The syntax for instance descriptions and patterns were
borrowed, unchanged, from Omega. Our notation for instantiation of abstractions is
almost identical to the notation for instance descriptions, to make them readable,
and to suggest a close relationship between the two ideas. Whenever possible, we
attempted to use the syntax described in [Theriault 82]. Above all, we did not want
to make the language much more complex to read or work with. We made an effort
to express familiar ideas and constructs in familiar ways and with commonly-
understood notations. For example, we permit the use of infix notation in

expressions.

63

L

e ——

RSt et S S Sy

4.2.4.2 Economy of Concept

There are relatively few fundamental concepts in Act2. All computation is
ultimately expressed in terms of actor creation and replacement, communication
transiission, and simple decision. Properties of actors and the actor model are
exploited in the language, to avoid introducing new concepts and constructs. There
is also the familiar and intuitively appealing notion of description. They are used as
information containers as well as "types” in the language. Pattern matching is used
for recognizing and extracting information, binding names, accepting
communications, handling complaints, dispatching on values, testing for equality,

instantiating abstractions, comparing descriptions, and type-checking.

4.2.4.3 Uniformity

In Act2, similar things are done in similar ways. We have already seen the
similarity of new and a expressions. Creating a new bank account with

(new bank-account (with balance 600)) is very similar to creating a description

of the bank account with (a bank-account (with balance 600))

The create, case-for, and one-of expressions are quite similar in the way they

choose one of many possibilities. They all have the form:

(introductory-part
possibility-1-1
possibility-1-2
possibility-1-nl
(otherwise possibility-2-1

possibility-2-2

b(.).;sibl'/fl y-2-n2
(otherwise ...)))

The first set of possibilities, possibility-1-i, are tried concurrently. The first
(temporally) to succeed is chosen, and its body of commands is evaluated. If noneis

successful, the sccond set of possibilities is tried. Any number of sets of possibilities

64

st ale

Ny

it ol

e ket "

can be denoted in nested otherwise clauses. 1 none succeed, the evaluation

complains.

Another aspect of uniformity is that case-for, let, one-of, and if cxpressions
have exactly the same syntax and very simifar senmantics as case-for, let, onc-of, and
if commands. In addition, these expressions, and the create expression, have bodies
of commands very much like those of composite commands. This allows concurrent
activities to be performed as the bodies are evaluated. All bodies have the form:

do command-1 command-2 ... command-n

The idea of denoting the natural or exceptional "value"” of a composite
expression is thought of as sending a reply or complaint communication in response
to a request for evaluation of the cxp.rcssion. Therefore, the same syntax is used for
this as is used for replying or complaining in response to a request communication,

in the bodies of create expressions. The reply and complain commands serve both

purposes.

4.2.4.4 Programmer Productivity Supported by High-Level Constructs

Studies have suggested that the average amount of debugged code, measured
in lines, a programmer can write per day is relatively constant across languages. The
most interesting of these tests supported this result when comparing assembly
coding and PL/1 coding. 1t found that people would write and debug at ronghly the
same rate in lines of code per day. Because a line of PL/1 code typically does much
more than a line of assembly code, the PL/1 programmers tend to produce more,
This might be attributable to the increase in readability, understandability, and

programmability, as well as higher-level abstraction mechanisms.

Part of the goal in the design of actor languages is to do as much as possible

65

. for a programmer. Writing highly concurrent programs in some languages, such as
a Mocsa, assembly code, and even Ada, is somewhat cumbersome and requires special
attention; concurrency is inherent in Act2 and needs little if any consideration by :
i programmers. Act2’s high-level constructs allow convenient expression of complex

concurrent behavior.,

e N e e

Another of Act2’s features is pattern-matching, which condenses and localizes

much functionality in arcas such as recognition, filtering, and dispatch. Act2 makes
iv potentially more of a savings, once assertion and deduction mechanisms are

embedded and made use of.

4.2.4.5 Abstraction and Extension !

Act2 has mechanisms for defining and instantiating abstractions, the define
and new expressions. These mechanisms unify the notions of procedural, control,
and data abstraction by emphasizing communication, rather than representation.
Abstraction allows a programmer to define his own abstiactions in addition to those
which are provided with the language. Because of the uniformity in which pre-
defined and user-defined abstractions are treated, this can be thought of as raising
the level of the language itself. 1t makes the language more suitable for
implementing applications which are more easily expressed in terms of those

constructs.

Act2 goes beyond this aspect of expressiveness, allowing programmers to
introduce new expressions and commands into the language itself. Not only is it
possible to define abstractions suitable for special application domains, but it is
possible to tailor the language itself into one allowing convenient expression of

fundamental concepts in the application domains.

r . e
(SR SN NPT UV WY S -

Programmers can exploit the exiensibility mechanisms to provide a more
g comfortable language with syntactic sugaring allowing common behavior to be
expressed concisely. We can extend the language with more specific constructs,
which are implemented in terms of the more general ones. For example, the if
construct is simply a specialization of one-of. It was, however, included because of
the frequency with which binary decisions occur, and becausé it makes them more

readable, and is more familiar to programmers.

4.3 Act2 has Actor Semantics

4.3.1 Act2 is Actor-Based |

S
—

The Act2 language is based on a well-defined, mathematically understood !

computational model. The integrity and consistency of the acior model have been
established in [Clinger 81b). This formal model serves as a solid foundation for
Act2, which inherits the benefits of well-definedness, and exploits the properties of

the model.

Many of the fundamental issues in language design of a language system, such

as abstraction mechanisms and concurrent computation, are dealt with abstractly by
the Actor model of computation [Hewitt and Baker 78). Because Act2 allows the
characteristics of the model show through at the language level, issues handled by
the model are inherited by the language. The language design can concentrate more

on other issues. This is another of the features of a layered language design

approach.

67

- m”ﬁ“wﬂ e e i ‘ s 2 ‘u

4.3.1.1 Representation Abstraction

An actor cannot directly view or manipulate the contents or implementation of
another actor. All it can do is communicate with the actor, asking it for information ;

or requesting it to change. Only the actor itself can alter its behavior. This property

software engineering. Techniques for data-type induction have been developed for

is known by several names, including representation abstraction, protection, r
encapsulation, opacity, and information-hiding. The hiding of implementation ¢
details has proven itself as one of the fundamental paradigms of software i
engineering. :
Limiting access to an actor’s implementation has many benefits in the area of [4

|

f

the object-oriented computational model [Liskov 72, Guttag, Horowitz and Musser
76). Similar techniques can be used within the actor model [Hewitt and Attardi

81, Hewitt, Attardi, Lieberman 79]. The correctness of an actor’s implementation is
a local phenomenon, depending only upon its specification, its script, and the

specification of the actors it communicates with.

The discipline of communication enforced by actors allows the
implementation of an actor to chénge, without affecting the actors which
communicate with that actor, as long as the actor's communication protocols do not
appear different to them. It also allows different implementations of an actor to

coexist.

4.3.1.2 Absolute Containment

In addition to being opaque, an actor is entirely self-contained. It can only
communicate with its acquaintances and with the acquaintances of the
communication it is currently processing. There is no notion of global state to put

restrictions on the existence and location of the actor. Actors can be migrated from

68

worker to worker when convenient, because of their machine independence. This
transportability is possible precisely because there is no dependence of the actor on

any storage locations local to a worker.

4.3.2 Modularity

Actors’ properties of representation abstraction and absolute containment
suggest the modularity inherent in the actor model. The model goes beyond this,
unifying data, control, and procedural abstractions. The fact that an actor contains
both data and procedural information (its acquaintances and script), is naturally
sufficient for representing both procedures and data structures. The model’s

emphasis on communication blurs the distinction between them,

The emphasis on communication also allows the representation of control
abstractions as actors {[Hewitt 77]. One typical use for control structures in
programming languages is to obtain a stream of values [Liskov, et al 81]. These can
be represented as dynamic sequences in Act2, a literal manifestation of the
"sequences” like those in [Waters 83]. Snppose we have an abstraction
implementing tree traversal. We can simply create an actor representing the
traversal of some specified tree. This actor might behave just like a scquence,
accepting requests for its first and rest. In fact, it retains information about the

tree and its placement within it, and computes the requested information

dynamically.

Sponsors allow the implementation of a new class of control abstraction. They

regulate the availability and rate of consumption of computing resources by
asynchronous computations. Explicitly expressing this in the computations

themselves would drastically increase the complexity of their implementations.

69

L e T L

Ty

E TROUTNTW

Act2 unifies the idcas of data, control, and procedural abstraction in a single

abstraction mechanism. This abstraction mechanism encapsulates not only the

2 creation of actors, but arbitrary expressions in the Act2 language. This allows for a
more convenient expression of procedural abstractions than that mentioned above.
5 The define and new expressions cooperate to provide this very flexible form of

lambda abstraction.

,% Abstractions in Act2 are actors, and can be sent communications just like any
i other actor. This corresponds to the idea of abstractions being first-class objects in
other languages. This is clear in the case that the abstraction definition simply
represents the creation of an actor. It is also true in the case of some other arbitrary
expression. For example, consider the definition of a factorial procedural

abstraction as a recursive expression. The implementation is installed in a

factorial atomic description, which can then be sent communications relevant to

the implementation.

4.3.3 Message Passing Semantics Permeate Act2

In an actor-based language such as Act2, everything is an actor. All
computation is performed using transmission of communications. These provide
tremendous flexibility in expressing and performing computations, as will be

discussed below.

4.3.3.1 Primitive Actors use Message Passing Semantics

In Act2, the message-passing paradigm of the actor model is used down to the
level of primitive, pre-defined actors such as numbers and symbols. For cxample,
simple arithmetic operations can be performed by the numbers themselves, in

response to requests to do so. Because a uniform protocol is used throughout, a user

70

_d

e gy o i
PO gL = S G g

e)

g g

R RIS

39

- _—._.._—-—...»-.‘r & =

ittt i mdiminei S st

==

can define his own form: of numbers, such as complex numbers, which behave like
numbers. Code written for handling numbers in general will work even when some
of the numbers handled are user-defined ones. The use of message-passing
semantics in this manner makes the arithmetic operations work across machines, and
with arbitrary actors using the numeric communication protocols. This is essential
for concurrent applications in general. Arithmetic operations involving primitive
numbers on a single worker is viewed as a special case which can be optimized,

rather than as the only case, such as in many other languages.

4.3.3.2 Actors Implemented in Act2 have Actor Scripts

The script for an actor implemented in Act2 is itself an actor. The declaration
of an abstraction involves the installation of an abstract syntax tree representing the
abstracted expression. Instantiation of uncompiled abstractions causes this abstract
syntax tree to evaluate itself. Actors created in this manner have scripts which are
composed of a tree of abstract syntax actors, representing the behavior of the actor
in terms of Act2 language constructs. Acceptance of a communication involves

message-passing among the abstract syntax actors composing its script.

4.3.3.3 Programs as Data

Act2 programs are "first-class objects” in the Act2 language. User input is
read in as symbols, numbers, and list structure. All of these are actors, which can be
communicated with. Parsing produces abstract syntax trees, composed entirely of
actors. Environments are first-class objects in the language, and can be accessed,
created, or manipulated by programs. Evaluation can be done simply by sending an
evaluation request to an abstract syntax tree. ltis evident, then, that Act2 programs
can be written which manipulate or create other Act2 programs. Such power

accounts partially for the popularity of Lisp.

!

The quote cxpression is very useful for construction of Act2 code by other
programs. lt allows the denotation of unparsed list structure and symbols, of which
Act2 syntax is composed. The parse-expression expression is convenient for
denoting abstract syntax trees. It parses, but does not evaluate the list structure or

symbols in its argument.

4.3.4 Transactions

All communication in Act2 occurs by one-way, asynchronous, buffered
transmission of communications. It does not rely on a procedure-call mechanism, as
do languages like Argus and Ada. Procedure call semantics can be implemented
efficiently using message-passing. They are simply a special case of the more

general notion of transactions in Act2.

Act2 supports three major kinds of communications. Request
communications correspond roughly to the procedure-call part of the procedure--
call-and-return mechanism. They include extra information, customers and
complaint-departments, indicating where a response should be sent. Reply
communications correspond roughly to the return part of the procedure-call-and-

return mechanism.

A very common pattern of communication is the sending of a request,
including a customer, to some target actor, followed eventually by the sending of a
reply to the customer. The sending of the request and the sending of the reply are
fully decoupled, however. The receiver of the request can redirect the request to
another actor. It can do some processing and let another finish. It can hang on to or
pass along the customer from the request, which is a "first class object” in the
language. It, or some other actor, can eventually reply to the customer. Between the

sending of the request and the sending of the reply, arbitrarily convoluted patterns

72

— =

of communication transmission can occur. Actors are not arbitrarily restricted by

strict control structures hke procedure call and return.

4.3.4.1 Customer Chains versus Execution Stacks

There is no need for execution stacks in Act2. This functionality is subsumed
by "chains” of customers — customers with customer acquaintances. When they
receive a reply, they might eventually reply to their customer acquaintances. These
chains are more flexible than execution stacks. Many such chains can exist. They
can branch off into multiple customer chains. They can span workers. Portions of
them can be migrated from worker to worker, independently from the rest. Being

actors, they can be kept as acquaintances and communicated with.

The very common pattern of sending a request and accepting a reply are
-expressed very conveniently in Act2. The programmer does niot need to explicitly
construct customers for each request. Act2 expressions transform their proccdure--
call notation, and the contexts in which they occur, into the sending of requests with
appropriate customers. This is done without programrer effort. Common patterns
of communication among actors on the same worker can be optimized, increasing

the efficiency of the transactions.

4.3.4.2 Complaint Handling

When an actor accepts a request, it is usually expected to respond. If
processing of the communication completes without problems, a reply
communication can be sent in response. If minor problems occur, it is often
possible to reply with some meaningful message. If, however, irreconcilable
problems do occur, some means is needed to indicate that fact, as well as to respond

with some communication with a message which might indicate the rcason for the

13

e e———— S S - TS = - R
= e 3

i

it S i g M

failure and provide any information which might be helpful to recover from the

problem.

Act2 provides a special type of communication called a complaint
communication to represent an cxceptional response. This corresponds roughly to
Clu signals, PL/1 conditions, or error codes. In keeping with the Actor model of
computation, Act2 performs exception handling using the message-passing

paradigm.

Act2 provides mechanisms for handling complaints. The primary one, the
case-for construct, is for handling complaints generated by the evaluation of an
expression, which we'll call the guarded expression. It recognizes complaints using
pattern-matching. It performs an additional service by recognizing replies using
pattern-matching. That is, the case-for construct makes use of the pattern-matching
paradigm to recognize and extract information from responses to requests, whether
they are replies or complaints. Along with this recognition is the selection of a body

of commands to be evaluated once the response is obtained.

The case-for construct serves both as a dispatching mechanism for (replies to
the cvaluation of) the guarded expression and as a complaint-handling mechanism
(if complaints are generated by the evaluation). In this sense, case-for unifies the
notions of dispatching, complaint-handling, information extraction, and decision-
making. For example, suppose we had a variation of the account abstraction
defined in {section 2.3, page 34}, which included the new balance in deposit and
withdrawal receipts. When making a withdrawal, we could use the case-for
construct to handle a complaint or to take different actions based on the new

balance:

74

[———

(case-for (ask my-account (a withdrawal (with amount x)))
(complaint (an overdraft) do ...)
(is (a withdrawal-receipt
(with new-balance (=b such-that (< b 500)))) do ...)
(otherwise
(1s (a withdrawal-receipt (with balance =b)) do ...)))

Act2 provides a mechanism for handling complaints from a command. This is
very similar to a case-for command with has complaint handlers, exclusively.

Rather than guarding an expression, this command guards another command.

Complaints are autorhatically relayed by constructs which do not explicitly
handle them. In additioh, this does not even causc a degradation in performance,
because requests have both a customer and a complaint department. Replies are
sent directly to the customer. Complaints are sent directly to the complaint
department, with no need for winding down through a customer chain. This idea

was suggested in [Lieberman 82).

Act2 may, itsclf gencrate complaints when this is appropriate and there is no
convenient alternative. For example, if no handler is capable of accepting a
communication, Act2 will complain to the communication’s complaint department

(if it is a request) or to the implementor.

4.3.5 Inherent Concurrency

The actor model, with its one-way, asynchronous, buffered model of
communication, is inherently concurrent. The Act2 language preserves this inherent

concurrency in its high-level constructs.

Whenever no ordering is necessary between the evaluations of separate
commands and expressions, the Act2 definition does not impose one. This allows

them to be cvaluated concurrently, and their evaluations can proceed in parallel if

15

et it 2 ettt O o ot et D

sufficient parallclism is available. The design of Act2 attemipts to minimize
dependencies among expressions and commands. Inherent concurrency is an
important aspect of our actor language which distinguishes it from other modern
programming languages, in which concurrency must be artificially generated, or

requires special attention from the programmer.

4.3.5.1 Local versus Global State Change

As discussed above, change in Act2 is a local phenomenon. An actor can
change its own behavior, but cannot directly manipulate any form of "global state”.
This permits more concurrency by reducing the necessary synchronization. Because
change is local, the only synchronization necessary is for serializers to process one
communication at a time. Allowing change to a global state would require
additicnal synchronization among actors and transactions, to preserve the integrity

of the global state,

4.3.5.2 Local Binding versus Assignment

Act2 has no assignment command. In addition, bindings established in an
expression or command, such as create, let, and case-for, are not available outside
that expression or command. Because of this, there are no timing constraints among
distinct expressions and commands. These expressions and commands can be
evaluated concurrently. An assignment command would introduce timing

constraints among commands, requiring them to be evaluated sequentially,

4.3.5.3 Concurrent Commands and Shared Resources

When commands share a resource, such as a serializer, programmers may wish

to rely on additional synchronization. For example, one command might cause

16

e

g TR

b 0.1 b

(S A,

some actor to change its state, and the other might ask the same actor for some 1

information. The programmer may wish the request for information to reach the

I e asmgases s

actor after any communications sent to it by the first command have been processed.
A programmer can impose an ordering upon commands using the sequential

command. This should only be used when the programmer explicitly relies on such

-

timing dependencies,

4.3.5.4 Concurrent Evaluation and Explicit Sequencing

Act2 is specified as an inherently concurrent language. For example,
commands in a command body are evaluated concurrently. Sub-expressions in a
command or expression are evaluated concurrently. In a set of pattern-matchers,
such as in let, case-for, or create expressions, all evaluations of patterns and I

i

expressions and subsequent pattern-matching itself are done concurrently.

Create, case-for, one-of, and if also contain the otherwise clause as a

.

convenient way to serialize sets of possibilities. [Theriault 82] had a similar
mechanism, but used it as a mechanism for providing a default body. Act2
generalizes this into a full-fledged sequencing mechanism, from which providing a

default is a trivial case. For example, it is easy both to provide a default, as in

{case-for x
(is (a stack (with top =t)) do ...)

iotherw1se (is something do ...))) |

and to prioritize the sets of possibilities, as in

(case-for x
(is (a whole-number) do ...)
(otherwise (is (an integer) do ...)
(otherwise (1s (a real) do ...))))

7

4.3.5.5 Resource Managenient .

With the amount of concurrent activity produced by Act2, resource
management is important. Act2 uses sponsors for resource management. Every
communication contains a sponsor, which is charged for the processing of the
communication. This requires cooperation from the underlying apiary architecture,

which requires payment for processing each event,

Below is an example of Act2 code which explicitly deals with resource
management. It is simply a reworking of the example in {section 3.2, page 46}. In
this code, it is the sponsor from the evaluation request which pays for the evaluation
of the contained expression, rather than the sponsor from the first communication

sent to it.

(define (new DELAY-EXPRESSION (with expression =exp))
(create-unserialized
(1s-communication
(a request
(with message (=eval which-1s (an expression-eval)))
(with sponsor =s))
do
(reply (create
(is-communication =c¢ do
(let ((=value match
(using-sponsor s do
(reply (ask exp eval))))) do
(send~to value ¢)
(become value))))))))

4.4 Act2 Integrates Description and Action

4.4.1 Coexistence of Mechanisms for Description and Action

One important consideration in the design of Act2 is the unification of
mechanisms for description with the imperative mechanisms of the actor model.

Act?2 integrates the fundamentals of Actl and Omega, which are very different in

78

PR D PRI VI SV, WLt

character. Actl deals in an operational world of message-passing, actor creation,
and behavior change. Omega deals with knowledge acquisition in a lattice of
descriptions, and deduction based on installed relationships among them. It models
change by creating more descriptions, but is incapable of actually implementing
actors which can change. A language suitable for open systems, or concurrent

applications in general, must combine both sets of ideas.

Act2 1s built upon the actor model of computation. It has constructs for
transmission of communications, for making simple decisions, for creating actors,
and for self-replacement. Act2 also has actors which behave like atomic descriptions
and instance descriptions, which it uses for their information containment
properties, for their descriptive properties, and for a direct form of pattern-
matching. Act2’s abstraction mechanism, the define expression, establishes a
relationship between the two worlds by associating a description with every actor,

which corresponds to the actor’s "type". Act2’s pattern matching acknowledges this

relationship, serving as a form of "type-checking” when appropriate.

For example, a bank-account actor created with the expression
(new bank-account (with balance 600)) mmight be described by the instance
description (a bank-account) or by the instance description
(a bank-account (with balance 600)) if the implementor of the abstraction
wished to allow the balance information to be revealed. The actor could be matched
by a pattern of the form (a bank-account) in either case, and by a pattern of the
form (a bank-account (with balance =x)) in the second case, with the

identifier x being bound to the balance, 600.

79

-

.

[T s

4.4.1.1 Abstract Syntax for Description and Action

One of the problems in integrating the ideas from Actl and Omega is a set of
apparent name conflicts which arise in the constructs we desire Act2 to have. Note
the relationship between the instance description (a bank-account ...) and the
abstraction instantiation (new bank-account ...). Inthe instance description,
bank-account is some concept or atomic description. In the instantiation,
bank-account refers to the implementation of bank-accounts, as previously declared

in a define expression.

In addition, flex<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>